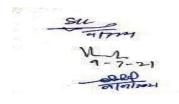
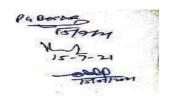
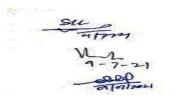
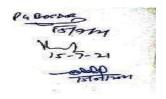

	MCA/GEN/1/CC1: Computer Architecture and Parallel Processing												
Course Type	Course	Contact	Delivery	Maximu	ım M	arks		Exam	Assessment				
	Credit	Hours/ Week	Mode	External	Internal			Duration	Methods				
Core Theory	04	04	Lecture	70	30 20 5 5				3 Hours	TEE/MTE/ Assignment/ Attendance			


Course Objectives: To study the fundamental concepts of computer architecture, various computational models, evolution of instruction level processors, classification of parallel architectures and MIMD architectures.

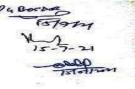

Course	At tl	ne end	of th	is cour	se, th	e stud	ent wi	11 be a	able to):		
Outcomes		At the end of this course, the student will be able to:										
CO1	arch sche	define the concepts of: computer architecture including types of computer architecture, computational model, instruction level processors, code scheduling for ILP processors, distributed and shared MIMD architectures.										
CO2	and	distri	buted		uting,	instr						, parallel uted and
CO3		trate essors		erent memo	• •		com	outati	onal	model	s, arcl	nitecture,
CO4	men	classify: computational models, computer architectures, processors, and memory models.										
CO5		Compare and choose (and justify) a particular: computational model, architecture and memory model in a given situation.										
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC1											
COs	Р	EO1		PEO	2]	PEO3		PEC	04	Р	EO5
CO1		1		3			1		3			3
CO2		2		3			1		3			3
CO3		3		3			1		3			3
CO4		3		3			1		3			3
CO5		3		3			1		3			3
Average		2.4		3			1		3			3
	CO	-PO N	lappi	ng Mat	rix fo	r Cou	rse MC	CA/GI	EN/1/(CC1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	-	-	-

CO2	2	1	1	3	1		3						
02		1	1	5	1		5	_		-			
CO3	3	1	1	3	3	-	3	-	-	-	-	-	
CO4	2	1	1	3	1	-	3	-	-	-	-	-	
CO5	2	2 1 3 1 3 - 3											
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	
	CO-	PSO I	Mappi	ing Ma	trix f) or Cou	irse M	CA/G	 EN/1/0	CC1			
COs		01		PSO2			PSO3		PSC		F	PSO5	
CO1		3		1			3		1			-	+
CO2		3		1			3		2			-	-
CO3		3		1			3		3			-	I
CO4		3		1			3		3			-	
CO5		3		1			3		3			-	
Average		3		1		3		2	.4			-	
M		N/1/C	C1. C			Conte	nt ture an	d Day	ullal D	NO 0 0000	ina		
Unit – I	Conc evolu levels	urrent ition a s of a	and nd int lbstrac	Paral erpreta tion, ii	lel E tion o ntrodu	xecuti f the o ction	on: V concept	on-No of co allel j	eumann ompute process	n com er arch ing, ty	putation itecture	nal model, at different d levels of	
Unit – II	instru	ictions	, instr	uction	sched	uling,	concep	ts of	pipelin	e proc		es between ntroduction sors.	
Unit – III	netw	orks,	interco	onnectio	on toj	pologie		tching	g techi			rconnection and circuit	
Unit – IV	path, probl	switc em, H ctory	hing Hardw	networl are ba	ks-cro sed c	ssbar ache	and m coherer	ultista nce p	ige ne rotocol	tworks l-snoop	, Cache by cach	orks-shared coherence e protocol, tware-based	
	-			Text/	Refer	ence E	Books						
Text Books	1. C). Sima	a, Adv	anced (Compi	iter Ai	chitect	ures, l	Pearson	n Educa	ation		
Reference Books			•	Advar lity, Ta		-		chited	ture –	Paral	lelism,	Scalability,	

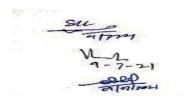


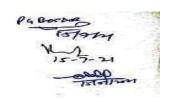


	MCA/GEN/1/CC2: Computer Networks												
Course Type	Course	Contact	Delivery	Maximu	ım Ma	arks		Exam	Assessment				
	Credit	Hours/ Week	Mode	External Internal			ıl	Duration	Methods				
Core Compulsory Theory	04	04	Lecture	70	30 20 5 5		3 Hours	TEE/MTE/ Assignment/ Attendance					


Course Objectives: The objective of this course is to make the students familiar with the topics of networking, data communication, modes of transmission, communication media, routing, error control and congestion control.

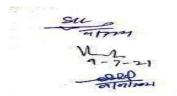
Course Outcomes	At the end of	f this course, the	e student will b	e able to:								
CO1	networking protocols us	define the terms and concepts of data communication and computer networking including types of network topologies, reference models, protocols used in data communication, transmission modes and media, switching and multiplexing.										
CO2	computer ne protocols us	etworking inclu ed in data co	iding network	topologies, re data transmiss	nmunication and eference models, sion modes and							
CO3	and comm communicat	apply the techniques learnt here in the design and evaluation of computer										
CO4	networks, ne error contro	etwork topolog	ies, switching a	and multiplexi ptocols, transi	communication ng mechanisms, mission modes,							
CO5	compare, evaluate and choose between candidate: network topologies, transmission media, switching and multiplexing techniques, protocols and different layers, error control mechanisms, congestion control techniques.											
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC2											
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	1	3	3							
CO.2	2	3	1	3	3							

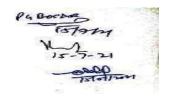




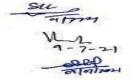
CO3		3		3			1		3			3			
CO4		3		3			1		3			3			
CO5		3		3			1		3		3				
Average		2.4		3			1		3			3			
	CO	-PO M	lappi	ng Mat	trix fo	r Cou	rse MC	CA/GI	EN/1/0	CC2					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	-	3	1	-	2	-	-			
CO.2	2	1	1	3	1	-	3	2	-	2	-	-			
CO3	3	1	1	3	3	-	3	3	-	2	-	-			
CO4	2	1	1	3	1	-	3	3	-	2	-	-			
CO5	2	1	3	1	3	-	3	3	-	2	-	-			
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-			
	CO-	PSO I	Mappi	ing Ma	trix fo	or Cou	rse M	CA/G	EN/1/	CC2					
COs	CO-PSO Mapping Matrix for Course MCA/GEN/1/CC2PSO1PSO2PSO3PSO4PSO5														
CO1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CO.2		$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$ $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ $\begin{vmatrix} 3 \\ 3 \end{vmatrix}$ $\begin{vmatrix} 2 \\ - \end{vmatrix}$													
CO3		3		2			3		3			-			
CO4		3		2		3			3			-			
CO5		3		2			3		3			-			
Average		3		2			3		2	.4		-			
		М	CA/G		ourse CC2: (nt uter No	etwor	ks						
Unit - I	categ netwo Netwo of its transp	ork co ories c orks. orks a orks a	ncepts of netv rchited s; TC	s: goals vorks - cture: c P/IP re	and a LAN, oncept	pplicat MAN ts of p e mod	tions of , WAN rotocol lel. TC	comp ; poin ; & se P/IP:	outer n t-to po ervices eleme	int, and ; OSI n nts of t	ranspor				
Unit - II	transi introc (frequ	missio duction uency	n mo n to divisi	odes; switch on and	transm ing (d l time	iission circuit divisi	medi , mess	a – age iodem	guide and p	d and acket)	wirele and m	on system; ess media; ultiplexing IDS, X.25,			

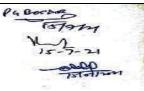
	correction. Data link control: acknowledgments, sliding window protocols. Multiple Access Control, flow and error control, token bus, token ring, DQDB.
Unit - IV	Routing: deterministic and adaptive routing; centralized and distributed routing; shortest-path; flooding; flow-based; optimal; distance-vector, link-state, hierarchical; routing for mobile hosts; broadcast and multicast routing. Congestion control: principles of congestion control; traffic shaping; choke packets; load shading; RSVP.
	Text/Reference Books
Text Books	 Andrews, Tananbaum, Computer Networks – PHI. Fred Halsall, Data Communications, Computer Networks and Open Systems, 4e, Addison Wesley. William Stalling, Data and Computer Communications, 5e, PHI.
Reference Books	2. Behrouz, Frozen, Introduction to Data Communications and Networking, Tata McGraw Hill.



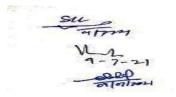


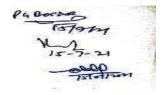
	MCA/GEN/1/CC3: Software Engineering												
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam Duration	Assessment						
	Credit	Hours/ Week	Mode	External	ternal Internal		Methods						
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
5					20 5 5		Attendance						


Course Objectives: The objective of this course is to make the students familiar with the topics of software crisis, software engineering paradigms, software configuration management, design, coding, testing and maintenance.

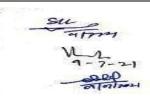

<u> </u>	
Course	At the end of this course, the student will be able to:
Outcomes	
CO1	enumerate/define the concepts of: software and software engineering,
	software development paradigms, phases of software development,
	methods of assessing quality and reliability.
CO2	describe and summarize: phases of software development process, testing
	techniques, relationship between reliability and quality.
CO3	illustrate various techniques of: requirement analysis, design, coding,
	testing and maintenance, quality and reliability.
CO4	analyse and classify: software engineering paradigms, cost estimation
	models, design methodologies, testing techniques, maintenance process,
	reliability and quality models.
CO5	compare and select from amongst candidate: software engineering
	paradigms, cost estimation models, design methodologies, testing
	techniques, maintenance process, reliability and quality models.
CO6	design and develop simple software using the concepts, techniques and
	principles of software engineering.
	CO-PEO Mapping Matrix for Course MCA/GEN/1/CC3

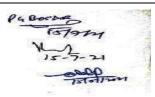
COs	Р	EO1		PEO	2	I	PEO3		PEC	D4	PE	05	
CO1		1		3			3		3		-	3	
CO2		2		3			3		3			3	
CO3		3 3				3			3		-		
CO4		3		3			3		3			3	
CO5		3 3 3 3 3											
Average		2.4		3			3		3			3	
	CO-I	PO Ma	apping	g Matr	ix for	Cours	e MCA	/GEI	N/1/CO	C 3			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	2	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	1	-	2	-	
CO3	3	1	1	3	3	-	3	2	1	-	2	-	
CO4	2	2 1 1 3 1 - 3 2 1 - 2 -								-			
CO5	2	2 1 3 1 3 - 3 2 1 -					2	-					
Average	2	1.4	1.4	2.2	1.8	-	3	2	1	-	2	-	
	CO-P	SO M	appin	g Mati	rix for	Cours	se MC.	A/GE	N/1/C	C3	I	I	
COs	PS	01		PSO2		F	SO3		PS	D4	PS	05	
CO1	3	3		3			3		1			-	
CO2	3	3		3			3		2			-	
CO3	3	3		3			3		3			-	
CO4	3	3		3			3		3			-	
CO5	3	3		3			3		3			-	
Average		3		3			3		2	.4		-	
		M	CA/G	C EN/1/C	ourse (CC3: S			ineeri	ng				
Unit - I	softw	vare e	nginee	ering p	aradig	ms, p	lanning	gas	oftwa		ect, sof	vare cri tware c	
Unit - II	data 1 Softw	modeli	ing, so onfigu	ftware	requir	ement	specifi	cation	, valid	ation.		nalysis toring, 1	
Unit - III	-	-	-						-		mentals cation,	, structu	

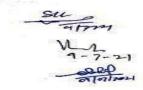


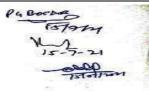


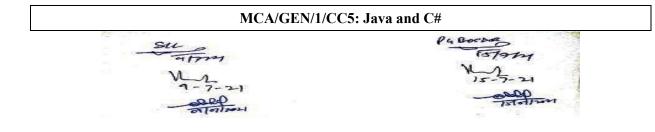
	and control, coding. Software Reliability: metric and specification, fault avoidance and tolerance, exception handling, defensive programming.
Unit - IV	Testing: testing fundamentals, white box and black box testing, software testing strategies: unit testing, integration testing, validation testing, system testing, debugging. Software maintenance: maintenance characteristics, maintainability, maintenance tasks, maintenance side effects. CASE tools. agile development.
	Text/Reference Books
Text Books	 Mall, Rajib, Fundamentals of Software Engineering, PHI Learning Pvt. Ltd Aggarwal, K.K, and Singh, Yogesh, Software Engineering, New Age International Jalote, Pankaj, An Integrated Approach to Software Engineering, Narosa Publishing House.
Reference Books	3. Pressman, S. Roger, Software Engineering, Tata McGraw-Hill.


		MCA/O	GEN/1/CC4:	Operating	Systems		
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Core Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
5					20 5 5		Attendance

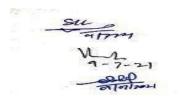

Course Objectives: The objective of this course is to get the students familiar with fundamental concepts of operating systems, namely, types of operating systems, functions of memory management module, process management module, deadlock management and file protection, etc.

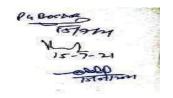



Course	At t	he end	l of th	is cou	rse, th	e stud	ent wi	11 be a	ible to):		
Outcomes												
CO1												g systen
										y the	techn	iques o
CO2				emory,						es of o	neratin	g systen
002												iques (
		-		emory,					-			1
CO3	illus	illustrate: the concepts of operating system like process scheduling,										
		memory management, virtual memory, directory structure, disk space										
004		allocation, and process deadlocks.										
CO4		classify: operating systems, deadlock management approaches, process scheduling algorithms, disk scheduling algorithms, page replacement										
										n meth		nacemen
CO5												oneratin
005		determine and argue the suitability of a particular types of: operating system, deadlock management approach, process scheduling algorithm,										
												sk spac
		allocation method, directory structure, memory management, disk										
	sche	duling	g algo	rithm	in a gi	iven s	ituatio	n.				
	CO-P	EO M	appin	g Mat	rix for	Cour	se MC	A/GE	N/1/C	C4		
COs	Р	PEO1PEO2PEO3PEO4PEO5										
CO1		1		3		1			3		-	3
CO2		2		3			1		3			3
CO3		3		3			1		3			3
CO4		3		3		1			3			3
CO5		3		3		1			3		-	3
Average		2.4		3			1		3			3
	CO-l	PO Ma	apping	g Matr	ix for	Cours	e MCA	A/GEN	N/1/CO	C 4		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	_	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
				a Mati	riv for	Cour	se MC	A/CF	N/1/C	C4		
	CO-P	50 M	аррш	g mau	IA IUI	Cour		A/GE		CΤ		
COs		SO M 101	арріп	PSO2			PSO3		PS		PS	05

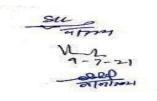


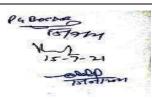
CO1	3	2	3	1		
CO2	3	2	3	2		-
CO2	3	2	3	3		
CO3	3	2	3	3	-	
CO4	3	2	3	3	-	-
Average	3	2	3	2.4	_	
	Μ	Course [CA/GEN/1/CC/4	Content : Operating Syst	ems		
Unit - I	systems – l operating s system calls	y concepts: Opera batch operating sy ystems, real-time s and their types, 1 perating system the	ystem, multitaskin operating system ayered architectur	ng operating sy ns, distributed	vstem, time-shar operating syste	ring ms
Unit - II	allocation n virtual men segmentation	nanagement: Func nethods – contiguo mory allocation; on, virtual memo thrashing, Belady'	bus and non-conti fragmentation – ry concepts, de	guous memory - internal and	allocation; real external, pagi	and ing,
Unit - III	system stat preemptive scheduling inter-proces	nagement: Process te and state space and non-preempti- algorithms, levels s communication, tion, semaphore, h	ce, state transiti ve scheduling, sta of scheduling, con , critical code s	on diagram; s arvation and its mparison of sch ection, mutual	scheduling crite mitigation, proc eduling algorith exclusion and	eria, cess ms,
Unit - IV	deadlock de concept, fi	concept, condition stection and recove le protection, file isk space allocation.	ry, practical consi e access control	iderations – osti , file access	rich approach; fi methods; direct	le – ory
		Text/Refer	ence Books			
Text Books	India Py 2. Chauha	nNaresh, Principle aum A.S., Opera	es of Operating Sy	stems, Oxford U	University Press	
Reference Books		M., Operating Syst				
	2. Stannigs	william, Operating	g System, PHI Le	arning.		


	3. Godbole A.S., Operating Systems, Tata McGraw-Hill, New Delhi
--	---

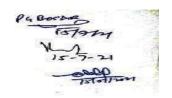


Course Type	Course	Contact	Contact Delivery Ma Hours/ Mode Exte		Maximum Marks				Assessment
	Credit				Internal		al	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30			3 Hours	TEE/MTE/ Assignment/
				20 5		20 5 5			Attendance

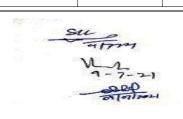

Course Objectives: The objective of this course is to get the basic concepts and building blocks of Core Java and C#.Net programming languages using the modular approach which emphasizes on small programs. Learn how to write moderately complex programs efficiently. Learn making GUI-based applications in Core Java as well as C#.Net.

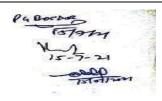

Course Outcomes											
CO1	-	rogramming envi		• 1							
	-	ays, programming			-						
	-	r data storing, data	a structure lib	rary, graphical	user interface						
	1	concepts.									
CO2		e: programming		1 0 0	I I						
		ded programmin	-	ng using file	system, data						
602		ibrary, GUI conce	*	1 1 .							
CO3		sic programming	-								
	operations, data structure operations, concurrent execution of threads, user friendly interfaced programs.										
CO4		: data types, p		approaches f	low controls						
04											
		constructs, loops, single and multithreaded programming, various classes in collection framework, GUI controls.									
CO5		choose: data types, programming approaches, branching and iteration									
		methods, serial or concurrent programming, data structures supporting classes in collection framework.									
CO6	create: pro	ograms using basi	c concepts, m	ultithreading ar	nd GUI based						
	concepts.										
(CO-PEO Map	ping Matrix for C	ourse MCA/G	EN/1/CC5							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	3	3	3						
CO2	2	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3 3 3 3 3									
CO6	3	3 3 3 3 3									
Average	2.5	3	3	3	3						
	CO-PO Mapj	oing Matrix for Co	urse MCA/GE	CN/1/CC5							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	1	_	_	_	-
CO2	2	1	1	3	1	-	3	2	_	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-]	PSO M	apping	g Matr	ix for	Cours	e MCA	\/GEI	N/1/CC	5		
COs	PS	SO1		PSO	2		PSO3		PSC	04	PS	05
CO1		3		1			1	Ì	1			-
CO2		3		2			2		2			-
CO3		3		3			3		3			-
CO4		3		3			3		3			-
CO5		3		3			3		3			-
CO6		3		3			3		3			-
Average		3		2.5			2.5		2.:	5		-
Unit - I Unit - II Unit - III Unit - IV	reference array, s OOPS destruct inherita Multith method synchro Workin	ce types tring, fu concep tors, Po nce, int reading s, creation g with (ion framork, list	, opera nction ts in lymor erface, in Jav ing sin n, inter GUI in mewor , set, n	ttors an s, boxi Java phism: abstra a and gle an thread Java a k in nap.	nd its t ng unb and (functi ct class C#:thre d mult comm nd C#: Java	ypes, c ooxing, C#: er on ove s, pack ead mo iple th nunicat contai and C	lecision scope ncapsu erloadin ages, e odel, m readed ion. iners an #: inte	n cont of var lation, ng an except ultith progr nd cor erface	rols, co riables, class, d opera ion han reading ram, co mponen s and	ontrol sta , objec ator ove dling. suppor ntext sy ts. classes	t, cons rloading ting cla witching	a types, s, loops, tructors, g in C#, sses and g, thread
]	Fext/R	eferen	ce Boo	oks					
Text Books	 Darrel Ince& Adam Freeman, Programming the Internet with Java, 2e, Addison Wesley. K.A. Mughal, R.W. Rasmussen, A Programmer's Guide to Java Certification, Addison Wesley. E. Balagurusamy, Programming with Java, 6e, Tata McGraw Hill. E. Balagurusamy, Programming in C# - A Primer, 4e, Tata McGraw Hill. 											
Reference Books	1. Herb 2. Herb				-					AcGraw [ill.	Hill.	
	Su							PAB	orba			

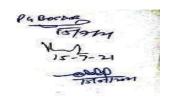

		MCA/O	GEN/1/CC6:	Software La	b –Java				
Course Type	Cour		Delivery	Maximu	m Marks	Exam	Assessment		
	Crec	lit Hours/ Week	Mode	External	Internal	Duration	Methods		
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File		
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on the practical file, performance in practical exam and a viva voce exam.									
Course Objectives: The objective of this course is to get the students hands-on practice with Core Java programming concepts covered in course MCA/GEN/1/CC5.									
Cours	e	By the end of	this course,	the student	will able to	:			
Outcom	es								
CO1		outline: progr arrays, progra for data storin	amming app	roaches, thr	eads in pro	ogramming	g, file system		
CO2		summarize:	programming programm	g fundamen ing, data	ntals, pro	gramming	approaches, system, data		
CO3		apply: basic programming concepts: to solve basic mathematical operations, data structure operations, concurrent execution of threads, user friendly interfaced programs.							
CO4			ata types, p and mult	rogramming ithreaded p			s constructs, s classes in		
CO5 choose: data types, programming approaches, branching and iteration									

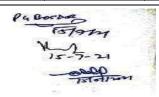
CO3Choose: data types, programming approaches, branching and heration
methods, serial or concurrent programming, data structures supporting
classes in collection framework.CO6develop: programs using basic concepts, multithreading and GUI based


	concepts.									
	CO-PEO Map	oping Matrix for Co	ourse MCA/GE	N/1/CC6						
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	3	3	3					
CO2	2	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
CO6	3	3	3	3	3					
Average	2.5	3	3	3	3					

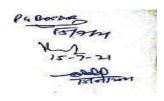

PAB

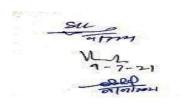
	CO-P	O Maj	pping	Matrix	x for C	Course	MCA/	'GEN/1	CC6			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
												2
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-PS	O Ma	pping	g Matri	x for (Course	MCA	/GEN/	1/CC6	Ó		
COs	PS	01		PSO2]	PSO3		PS	04	PS	05
CO1		3		1			1		1	1	-	
CO2		3		2			2		2	2	-	
CO3		3		3			3			3	-	
CO4		3		3			3		3		-	
CO5		3		3			3		3		-	
CO6		3		3			3		3		-	
Average		3		2.5			2.5		2.5		-	


[
	r	MCA/GI	EN/1/CC7: So	oftware La	ab – C#	- 1			
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File		
Instructions to conducted by a practical file, per	panel of ir	nternal and ex	ternal examin	ers. Exam	inees will				
Course Objection programming con					e students	hands-on pr	actice with C#		
Course	At	the end of th	is course, the	e student v	will be abl	e to:			
Outcomes									
COI	CO1 outline: programming environment, data types, control constructs loops, arrays, programming approaches, threads in programming, file system for data storing, data structure library, graphical user interface concepts.								
CO2	sur apj	summarize: data types, programming concepts, programming approaches, multithreaded programming, data storing using file system data structure library, GUI concepts.							
CO3	op	1	a structure of	perations			mathematical n of threads,		
CO4	cat and	egorize: prog	gramming ap aded progra	proaches			loops, single n collection		
CO5	ser		rrent program		-		on methods, ng classes in		
CO6		velop: progra	ms using bas	sic concep	ots, multitl	rreading and	I GUI based		
Average									
	CO-	PEO Mappin	g Matrix for	Course M	CA/GEN/	1/CC7			
Cos		PEO1	PEO2	PE	03	PEO4	PEO5		
CO1		1	3	3	;	3	3		
CO2		2	3	3	3	3	3		
CO3		3	3	3	;	3	3		


CO4		3		3			3		3			3	
CO5		3		3			3			3		3	
CO6		3		3			3		3			3	
		-								-			
Average		2.5		3			3			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/1/CC7													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-		
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-P	SO M	apping	g Mati	rix for	Cours	e MC	A/GEN	N/1/CC	27			
COs	P	SO1		PSO	2		PSO3		PS	504	Р	SO5	
CO1		3		1			1			1		-	
CO2		3		2			2			2		-	
CO3		3		3			3			3		-	
CO4		3		3			3			3		-	
CO5		3		3			3		3			-	
CO6		3		3			3		3		-		
Average		3		2.5			2.5	Ĩ	2.5			-	

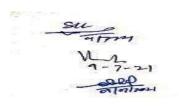
NL 9-7-21 Dep


				Data Store	4				
			EN/2/CC8:			1	-		
Course Type	Course Credit	Contact Hours/Week	Delivery Mode	Maxim			Exam Duration	questions of 2 e set unit-wise red to attempt us types of data tions. rithms, linear nashing. plain: sorting n resolution e, linked list, election sort, ap sort , hash	
	Cicuit	Hours/ week	Widde	External	Internal		Duration	Wiethous	
Compulsory	04	04	Lecture	70	30)	3 Hours		
Theory									
					20 5	5 5		tendance	
Instructions to paper setter for Final-Term Examination: The question paper will consist of nine									
	questions in all. First question will be compulsory and will consist of five short questions of 2								
marks each cove									
comprising of tw	-						-	ired to attempt	
four more questi	ons of 15	marks each s	electing at le	ast one qu	estion	from	each unit.		
Course Objective									
structure and diffe	erent techn	iques to impler	ment the data	structures a	nd thei	r real	-life applica	tions.	
Course Outco		the end of this							
CO1			• 1	U		-	• •		
		a structures, n			-			Ŭ.	
CO2	0	0	-				• 1		
		hniques, sea hniques.	irching me	thods, ha	asning	and	1 COIIISIO	n resolution	
CO3			levity of ala	orithm) u	ice arr	<u>av s</u>	tack queu	e linked list	
005									
		01		•					
		ction to solve			U	· 1	,	1	
CO4							sorting tec	hniques, hash	
		ctions; analyz							
CO5									
					-			· •	
heap sort , hash function and select the best one for given problem.									
	1	PEO Mapping	g Matrix for	Course Mo	CA/GE				
Cos		PEO1	PEO2	PEO	3	F	PEO4	PEO5	
CO1		1	3	1			3	3	

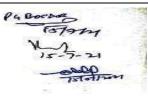


	1		-										
CO2		2		3			1			3			3
CO3		3		3			1			3		3	
CO4		3		3			1			3		3	
CO5		3		3		ĺ	1		3			3	
Average	2	2.4		3			1			3			3
	CO-I	PO Ma	pping	Matrix	k for (Course	MCA/	GE	N/2/	CC8			
Cos	POI	P02	PO3	P04	PO5	PO6	PO7	PO8		PO9	PO10	P011	P012
CO1	1	3	1	1	1	-	3		-	-	-	-	-
CO2	2	1	1	3	1	-	3		-	-	-	-	-
CO3	3	1	1	3	3	-	3		-	-	-	-	-
CO4	2	1	1	3	1	-	3		-	-	-	-	-
CO5	2	1	3	1	3	-	3		-	-	-	-	-
Average	2	1.4	1.4	2.2	1.5	-	3		-	-	-	-	-
	CO-P	SO Ma	apping	g Matri	x for	Course	e MCA	/GI	EN/2/	/CC8			
Cos	PS	01]	PSO2		P	SO3			PSO4		PS	05
CO1		3		3			3			1		-	
CO2	Í	3		3			3 2					-	
CO3		3		3			3		3				-
CO4		3		3			3		3				-
CO5	-	3		3			3			3			-
Average		3		3			3			2.4			-
		Μ	CA/G			ontent Data S	tructu	res					
8	lgorith	ms, tir	ne-spa	ce trad	e off	, mathe	matical	l no	otatio	n and	functi	-	alysis of ymptotic y.
	Stack: c Queues	peratic : opera	ons and tion of	applic	ation es, ci		as. Jueue, p	prio	rity (queues	and a	le-queu	e, linked tion.
ם איז ע	 list: implementation of linked list, header linked list for polynomial manipulation. III Non-linear data structures: Trees: binary tree, tree traversals, binary search tree, threaded binary tree, AVL tree, B-tree, B+ tree, heap and its applications, Huffman coding. Graph: representation of graphs, types of graph, graph traversals, topological sort, minimum spanning trees, Kruskal and Prim's algorithm, application of graphs. 												
Unit – IV S	Searchi	ng, sort	ing an	d hashi	ng teo	chnique	s:						
										-			

NL 9-7-21 Dep



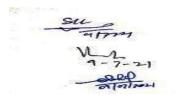
	Searching: linear search, binary search. Sorting: bubble sort, selection sort, insertion sort, radix sort, shell sort, merge sort, quick sort, heap sort, Hashing: hash functions, open addressing, chaining, rehashing.
	Text/Reference Books
Text Books	 Seymour Lipschutz, Data Structures, McGraw-Hill Book Company, Schaum's Outline series, NewYork (1986). Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education, 2002.
Reference Books	 Tanenbaum A.M., Langsam Y, Augenstien M.J., Data Structures using C & C++, Prentice Hall of India, 2002. SartajSahni, Data structures, Algorithms and Applications in C++, University Press (India) Pvt.Ltd, 2e, Universities Press Orient Longman Pvt. Ltd.

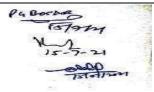

		MCA/	GEN/2/CC9	:Con	nputer G	raphic	s					
Course Type	Course	Contact	Deliver	v	Maximu	ım Maı	rks	Ex	am	A	Isses	sment
71	Credit	Hours/We		- -	External	Inter		Dura			Metł	
Compulsory Theory	04	04	Lecture	e	70	3	0	3 Ho	ours	А	ssign	MTE/ iment/ dance
Instructions to p questions in all. marks each cove comprising of tw four more quest	First que ering the wo questi	estion will whole syll ons from e	be compuls labus. In add each of the f	sory dition Cour u	and will n, eight r units. Th	consis nore q e cand	st of juesti lidate	five s ons v es are	short vill b requ	que pe se ired	estion et uni	ns of 2 it-wise
Course Objectiv Computer Graphi	v									oasic	conc	epts of
Course	At t	he end of	this course,	the s	tudent w	ill be	able 1	to:				
Outcomes	1.6		· 1 ·		<u>C.</u>		. 1		1	1		
CO1	define: computer graphics, soft copy computer devices, hard copy computer devices use in computer graphics, 2D graphics, 3D graphics, multimedia, 2D transformation, 3D transformation, resolution, graphic operation.										hic	
CO2	coor DD post line	describe: computer graphic application, random scan, raster scan, coordinate system, homogeneous coordinate system, scan conversion, DDA, Bresenham line drawing algorithm, 2D and 3D transformation, positioning, pointing, rubber band techniques, clipping operation on line, polygon clipping, hidden surface removal, parallel and perspective projection, shading.									sion , ation, on on	
CO3	app		hms: line	draw	ving, cli	pping	, hic	lden	surf	ace	rem	ioval,
CO4	cate	gorize: so	an convers ading metho		methods	, proj	ectio	n tec	hniq	lues	, clij	pping
CO5			evalutate: so ithms, shadi			on met	hods	, proj	ectio	on te	echni	ques,
	CO-l	PEO Mapp	ing Matrix f	for C	ourse M	CA/GI	EN/2/	CC9				
Cos]	PEO1	PEO2		PEO	3	Р	EO4			PEO	5
CO1		1	3		1	İ		3			3	
CO2		2	3		1			3			3	
CO3		3	3		1			3			3	
CO4		3	3		1			3			3	
CO5		3	3	1			3			3		
Average		2.4	3		1			3			3	
CO-PO Mapping Matrix for Course MCA/GEN/2/CC9												
Cos	PO1	PO2 P	O3 PO4	PO5	5 PO6	PO7	PO8	PO9	POI	10 F	PO 11	PO12

CO1		1	3	1	1	1	-	3	-	-	-	-	-
CO2		2	1	1	3	1	-	3	-	-	-	-	-
CO3		3	1	1	3	3	-	3	-	-	-	-	-
CO4		2	1	1	3	1	-	3	-	-	-	-	-
CO5		2	1	3	1	3	-	3	-	-	-	-	-
Averag	ge	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-
		CO-P	PSO Ma	pping	Matrix	for Co	urse M	CA/G	EN/2/	CC9			
Cos		PS	SO1		PSO2		PSO3	;	Р	SO4		PSO	5
CO1			3		1		3			1		-	
CO2			3		1		3			2		-	
CO3			3		1		3			3		-	
CO4			3		1		3			3		-	
CO5			3		1		3			3		-	
Averag	ge		3		1		3			2.4		-	
MCA/GEN/2/CC9: Computer Graphics Unit I Introduction: survey of computer graphics and its applications; Interactive and passive graphics; Introduction to GKS primitives; display processors; graphic devices: display system-refresh CRTs, raster scan and random scan monitors grey shades, Interlacing,													
Unit - II	beam p monito	oenetrat rs, LCI	tion sha D monit	dow m ors, VC	ask mo	nitors, SVGA r	look up esolutio	o table on; hai	es, pla	sma p y devi	anel, L ces-pri	ED an nters, p	d LCI lotters
Unit - II	system: Scan co generat 2-D Tr	; onversi tion of ansforr g; inpu	on: syn ellipse; nations:	nmetric transla	al DDA ation; ro pointing	., simpl otation;	e DDA scaling	, Bres ; mirre	enhan or refl	n's line ection	e drawi	ing alg	orithm oming
Unit - III	filling- Multim	n algor stack b nedia:	ithm, po ased fill concept	olygon algorit s of h	clipping	g; wind t/hyper	ow and nedia;	view multi	port; media	windo appli	wing tr	ansfor	nation
Unit - IV		rmation ctive p , area	n matri rojectio	ces fo n; hidd		lation, face ren	scaling noval,	g and z-buff	l rota fer, ba	tion; ack fa	paralle ce, sca	el proj in line,	ection deptl
				Т	ext/Refe	erence	Books						
Text Books.					line Bak ples of I		-	-			IcGraw	/ Hill.	
	3	su,	0					Pa	Borb	20		12	

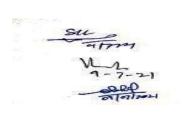
.....

Reference	1.John F. KoegelBufore, Multimedia Systems, Addison Wesley.
Books	2. Foley, Computer Graphics Principles & Practice, Addison Wesley.
	3. Rogers, Procedural elements of Computer Graphics, McGraw Hill.
	4. D.P. Mukherjee, Fundamentals of computer Graphics and Multimedia, PHI.


Su Trong N_L 9-7-21 SRD Talmu

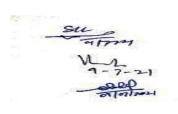

	MCA/GEN/2/CC10: Database Systems												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

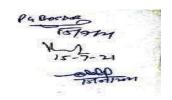
Course Objectives: The objective of this course is to get the students familiar with the concepts, models, architecture and applications of database systems.


	~ ~			2								
Course Outcomes						dent wi						
CO1						R diag						
	-					ata type			-			•
			-		ise sec	urity is	sues,	sema	ntic d	ata m	odels	, and
		server			1	1	1 1			1 1	<u> </u>	• 1
CO2				-		nal mo						
	algor		s, nor	mai 10	rins, s	SQL co	onstra	ants a	and v	lews	, reco	overy
CO3	0		itance	SOL a	Ineries	constra	ainte	recov	ory to	chnid		
									-		-	
CO4		entiate alizatio		oclass ctional	and depend	super dencies		ass, nal foi	spec ms.	ializa	tion	and
CO5	Ŭ	generalization, functional dependencies, normal forms. justify: architecture, relational schema , recovery technique and data										
	mode	model shall be better suited in different situation.										
CO-PO Mapping Matrix for Course MCA/GEN/2/CC10												
Cos	_	0	~	4		5	~	\sim	•	0	-	5
	PO1	P02	P03	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	P012
										щ		Ц
CO1	1	3	1	1	1	-	3	-	-	2	-	-
CO2	2	1	1	3	1	-	3	-	-	2	-	-
CO3	3	1	1	3	3	-	3	-	-	2	-	-
CO4	2	1	1	3	1	-	3	-	-	2	-	-
CO5	2	1	3	1	3	-	3	-	-	2	-	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-
C	O-PSO	Mappi	ing Ma	trix for	Cours	e MCA	/GEN	1/2/CC	210			
Cos	PSO1 PSO2 PSO3 PSO4 P								PSO	5		
CO1	3 3 3 1 -											
CO2	3 3 3 2							-				
CO3		3		3		3		3			-	

CO4	3	3	3	3	-
CO5	3	3	3	3	-
Average	3	3	3	2.4	-
	CO-PEO Mapp	ing Matrix for	Course MCA/C	GEN/2/CC10	
COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3
	MCA	Course (/GEN/2/CC10:	Content Database System	ms	
Unit I	the database app and disadvantag Database system	roach, abstracties of a DBMS, concepts and ture and data	rspective, file system on and data integrimplication of da architecture- dat independence d at modules.	ration, database tabase approach. a models, schem	users, advantages as and instances,
Unit - II	relationship typ types, E-R diagr Conventional da	es, roles and ams, design of ta models- an model- relation	y types, entity set structural constra an E-R database s overview of netwonal model con- asic operations.	aints, design iss schema. ork and hierarch	ues, weak entity
Unit – III	update statement SQL, queries in ORACLE – a 1 manipulation in applications. Relational data properties of dec NF and BC NF). Practical database	ts in SQL, vie SQL. nistorical persp Oracle, stora base design: fu composition, no	nts, & schema c w in SQL, spec ective, basic stru- ge organization unctional depend ormal forms based of information s se design in relati	ifying constraint acture, database in Oracle progr lencies, decompo d on primary key systems in organi	s and indexes in structure and its camming, Oracle osition, desirable rs (1 NF, 2 NF, 3
Unit – IV		system conce	cepts: introducti epts, properties schedules.		
	Su	2		4 BOSDER	100

	Concurrency control techniques: locking techniques, timestamp ordering, multiversion techniques, optimistic techniques. Recovery techniques: recovery concepts, recovery techniques in centralized DBMS. database security: introduction to database security issues.										
	Text/Reference Books										
Text Books	 Elmasri&Navathe, Fundamentals of Database System, 3e, Addison Wesley, New Delhi. Korth&Silberschatz, Database System Concept, 4e, McGraw Hill International Edition. 										
Reference Books	 C.J. Date, An Introduction to Database System 7e, Addison Western, New Delhi. Abbey Abramson & Cory, ORACLE SI-A Beginner's Guide, Tata McGraw Hill Publishing Company Ltd. 										

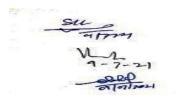


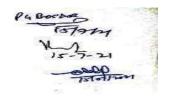

	MCA/GEN/2/CC11: Artificial Intelligence													
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment							
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance							

Course Objectives: The objective of this course is to provide n understanding of Artificial Intelligence techniques and their applications. Various search techniques and expert systems along with other components of artificial intelligence in computer science will be covered.

Course Outcomes	At	the en	d of t	nis cou	irse, th	e stud	lent w	ill b	e al	ole to:				
CO1												ductio	n system	,
	kno	wledg	e repre	esentati	on, lea	rning t	echnic	lues	and	genet	ic algo	rithm t	erminolo	gies.
CO2													alculus,	
			-										rate intel	-
				ling in	tellige	ent edi	tor, le	arni	ng ł	by ind	luction	and c	lealing v	vith
		certain												
CO3	use	: searc	h strat	egy/ger	netic al	gorith	m/ fuzz	zy lo	ogic	and le	earning	techni	que.	
CO4													or of generication of generication of generication of the second se	
CO5														ator of
	-	compare and select types of: search strategy, production system, learning, operator genetic algorithm, knowledge representation and approaches that deals with												
		ncertainty. PEO Mapping Matrix for Course MCA/GEN/2/CC11												
(CO-PE	O Ma	pping	Matri	x for C	Course	MCA	/GE	N/2	/CC1	1			
Cos	Р	EO1		PEC	02	I	PEO3 PEO4			ŀ	PE			
CO1		1		3			1		3				3	
CO2		2		3			1			3			3	
CO3		3		3	3 1 3 3		3							
CO4		3		3			1			3			3	
CO5		3		3			1			3			3	
Average		2.4		3			1			3			3	
	CO-P	O Map	ping 1	Matrix	for C	ourse	MCA/	GEN	N/2/	CC11				
Cos	1	2	3	4	2	9		×		6	0	-	5	
	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8		P09	PO10	P011	P012	
CO1	1	3	1	1	1	-	3	-	-	-	2	-	-	
CO2	2	1	1	3	1	- 3 2			-					
CO3	3	1	1	3	3	- 3 2		-						
CO4	2	1	1	3	1	-	3	-	-	-	2	-	-	

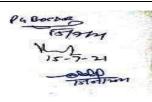
CO5	1	1	2	1	2	1	2		1		1	1				
CO5	2	1	3		3	-	3	-	-	2	-	-				
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	2	-	-				
CO-PSO Mapping Matrix for Course MCA/GEN/2/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO5 CO1 3 1 3 1 - CO2 3 1 3 2 - CO3 3 1 3 2 - CO4 3 1 3 3 - CO5 3 1 3 3 - CO5 3 1 3 2.4 - Course Content MCA/GEN/2/CC11: Artificial Intelligence Unit – I Introduction: background and history, overview of AI applications areas. The predicate calculus: syntax and semantic for propositional logic and FOPL, clausal form, inference rules, resolution and unification. Knowledge representation: network representation, associative network & conceptual graphs, structured representation, frames & scripts. Unit – II Search strategies: strategies for state space search, data-driven and goal driven search, Search algorithms: uninformed search (depth-first, breadth-first, depth-first with iterative deepening) and informed search (depth-first, properties of search algorithms, admissibility, monotonicity, optimality, dominance. Unit - III Production system: types of production system-comm																
	PS									1	PS	05				
				1							-	-				
CO2		3		1			3		2		-	-				
CO3		3		1			3		3		ogic and FOP					
CO4		3		1			3		3		-					
CO5		3		1			3		3		-	-				
Average		3		1			3		2.4		-	-				
				Cou	rse Co	ntent										
		MCA	/GEN	/ 2/CC 1	11: Ar	tificial	Intell	igence								
Unit – I	The p clausa Know	redicat 1 form, 1edge	e calc infere repres	ulus: s ence ru entatio	yntax les, res on: n	and ser solutior etwork	nantic and u repro	c for pro inificati esentatio	opositi on. on, as	onal lo sociati	ogic and					
Unit – II	 Search strategies: strategies for state space search, data-driven and goal driver search, Search algorithms: uninformed search (depth-first, breadth-first, depth-first with iterative deepening) and informed search (hill climbing, best first, A* algorithm, mini-max etc.), computational complexity, properties of search algorithms 									irst with gorithm,						
	comm produc Rule-l in ex algebr Demp	utative ction sy based e pert sy ca, non ster/Sh	ystems expert ystems mono affer	duction s, contr systen s, Bay tonic and ot	n sys ol of s ns: arc esian logic her ap	tems, earch in hitectu probab and proache	decor n prod re, de bility l reas es to u	nposabl uction s evelopn theory oning ncertair	e and system nent, , Stanf with nty.	d noi s. manag ford o beliefs	n-decom ging und certainty s, Fuzz	posable certainty factor y logic,				
Unit – IV	editor Genet	s, learn ic alg	ing by orithm	induc s: pro	tion. blem		entatio	on, enc				telligent perators:				
			Т	'ext/Re	eference	e Bool	KS									
Text Books	2. D	•		•			•	e, Pearso cial Inte				system,				
Reference Books	Add 2. Wil	dison V s J. Nil	Vesley sson, 1	Princip	oles of	Artifici	al Inte	elligence	e, Naro	osa Pul	al Intel olishing sley, 200					

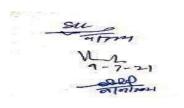


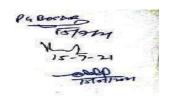


M	MCA/GEN/2/CC12: Web Development using Servlet, JSP and ASP.NET										
Course Type	Course	5		5	Exam	Assessment					
	Credit	Hours/ Week	Mode	External	Internal			Duration	Methods		
Compulsory Theory	04	04	Lecture	70		30		30		3 Hours	TEE/MTE/ Assignment/
					20	5	5		Attendance		

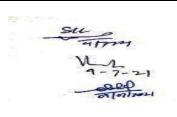
Course Objectives: To illustrate the basic concepts and building blocks of Servlet, JSP and ASP.Net language programming using the tire architecture approach. Learn how to write moderately complex programs efficiently. Learn making Web-based application in Servlet, JSP as well as ASP.Net


Course Outcomes	At the end o	f this course, the st	udent will able	e to:				
CO1		sic html tags,	-	•	•			
		s, server side prog	-		-			
		et layer, cookies, ja			-			
CO2	-	nl tags, javascript c	1					
		server pages, secure connection using SSL, cookies, controls in						
		ter pages, site navig	· ·					
CO3		tags, css, javascr			et concepts,			
		ection importance,		<u> </u>				
CO4		static and dynami						
		g, server types, g			vlet and jsp			
	programming, jap and asp.net platform, asp.net controls;							
CO5	choose: static or dynamic pages, client side or server side							
	programming, server types, get or post method, servlet or jsp							
~~ (programming, jap or asp.net platform, asp.net controls; and create: sample application using javascript, html, jsp, servlet and							
CO6		ple application us	ing javascript	, html, jsp,	servlet and			
	asp.net.							
CO	-PEO Mappir	ng Matrix for Cours	e MCA/GEN/2	2/CC12				
Cos	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	3	3	3	3			
CO2	2	3	3	3	3			
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			




CO5		3			3			3		3		3	
CO6		3		3		3		3		3			
Average		2.5			3			3		3	3	3	
	CO-	PO Ma	pping	Matri	x for (Course	MCA	/GEN/2	/CC12		1 T		
Cos	P01	P02	PO3	P04	PO5	PO6	P07	P08	P09	PO10	P011	P012	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-l	PSO Ma	apping	g Matr	ix for	Course	e MCA	/GEN/2	2/CC1	2		•	
Cos		PSO1		PSO2			PSO3		PS	PSO4		PSO5	
CO1		3		1			1		1		-	-	
CO2		3		2			2			2	-	-	
CO3		3		3			3		3		-		
CO4		3		3			3			3	-		
CO5		3		3			3		3		-	-	
CO6		3		3			3		3		-		
Average		3		2.5			2.5		2.5		-		
MCA	A/GEN/	2/CC12	: Web			ontent nt usin		let, JSP	and A	SP.NE	Г		
Unit - I		neet, ja	va scr	ipt fun	damen	tals (d	ata typ				s of cas nents, lo		
Unit - II Working with servlet: introduction to servlet, life cycle of servlet, supporting classes for servlet programming, use HTTP GET and POST methods, Request and response objects, data validation in servlet, working with web.xml.													
Unit - III	Working with JSP: introduction to Java Server Pages, JSP tags, use JSP tags with JavaBeans, introduction to session tracking and how it works, working with cookies (creations, view, delete), using JavaMail, introduction to Secure Socket Layer(SSL), how SSL works, when to use secure connection.												
Unit – IV	Workir	ng with	ASI	P.Net:	introd	uction,	visua	l studi	o env	ironme	nt, web	o form	

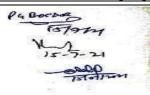
Ste atras 9-7-21 Dead atras



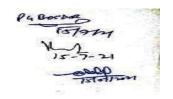
	structure(container and components- textbox, list box, combo box, buttons, pictures), user and server controls, basic client side script, Working with master page, site navigation, asp.net security model and its types, forms authentication and ts types.									
	Text/Reference Books									
Text Books	 Scott Guelich, Shishir Gundavaram, Gunther Birznieks, CGI Programming with Perl, 2e, O'Reilly. William J. Pardi, XML in Action, Web Technology, Microsoft Press. Aaron Weiss, Rebecca Taply, Kim Daniels, Stuven Mulder, Jeff Kaneshki, Web Authoring Desk Reference, BPB Publication. E. Balagurusamy, Programming in C#, 4e, Tata McGraw Hill. Herbert Schildt, C #: A Beginner's Guide, Tata McGraw Hill Jon Galloway, Professional ASP.NET Core 2.0, Wrox Publication. 									
Reference Books	 Thomas A Powell, HTML-The Complete Reference, 3e, Tata McGraw Hill. Jeffery R. Shapiro, The Complete Reference Visual Basic.NET, Tata McGraw Hill V.P. Jain, The Complete Guide to C # Programming, Dreamtech Press. Methew Macdonald, The Complete Reference ASP.NET, Osborne TMH. 									


МС	CA/GEN/2	2/CC13 Softw	are Lab: We	b Develop	ment usi	ng Servlet, JS	P	
Course Type	Course	Contact	Delivery	Maxim	um Marks		Assessment	
	Credit	Hours/Week	Mode	External Interna		l Duration	Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File	
conducted by a	Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.							
Course Objective programming con					students 1	hands-on prac	tice with J2EE	
Course At the end of this course, the student will be able to:								
	Outcomes							
CO1	O1 outline: basic html tags, cascading style sheet, javascript fundamentals, server side programming concepts: jsp, servlet, secure socket layer, cookies, java mail.							
CO2	-	olain: tags in a server page		1 0			let life cycle,	
CO3	apr	oly: html ta	ags, css, j	avascript.	servlet		epts, secure	
CO4	cat pro	egorize: stat	ic and dyn	amic pag	ges, cliei		server side let and jsp	
CO5		oose: static or ver types, get					rogramming,	
CO6		velop: web ap						
	CO-P	EO Mapping	Matrix for (Course M	CA/GEN/	2/CC13		
Cos		PEO1	PEO2	PI	EO3	PEO4	PEO5	
CO1		1	3		3	3	3	
CO2		2	3	3 3 3 3				

Regeordan Totothan

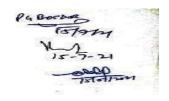

CO3		3			3		3		3		1	3	
CO4		3			3		3		3			3	
CO5		3			3		3			3		3	
CO6		3			3		3			3		3	
Average		2.5			3		3			3		3	
	CO-]	PO Ma	pping	Matri	x for (Cour	se MCA	/GEN	/2/CC1	3			
Cos	PO1	P02	P03	P04	PO5	P06	PO7	PO8	PO9	P010	P011	P012	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	CO-P	PSO Ma	apping	Matr	ix for	Cou	rse MCA	A/GEN	/2/CC	13			
Cos		PSO1		PS	PSO2			3	PSO4		P	PSO5	
CO1		3			1		1		1			-	
CO2		3			2		2			2		-	
CO3		3			3		3			3		-	
CO4		3			3		3		3			-	
CO5		3			3		3		3			-	
CO6		3			3		3		3			-	
Average		3		2	2.5		2.5		2.5			-	

NL 9-7-21 Dep


MC	A/GEI	N/2/CC14 Softw	are Lab: We	b Develop	ment using A	ASP[dot]N	ЕТ	
Course Type	Cour		Delivery	Maxim	um Marks	Exam	Assessment	
	Crec	lit Hours/Week	Mode	External	Internal	Duration	Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Attendance/ Practical File	
Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated based on practical file, performance in practical exam and a viva voce exam.								
Course Objectives: The objective of this course is to get the students hands-on practice with ASP[dot]NET programming concepts covered in course MCA/GEN/2/CC12.								
Course		At the end of th	is course, the	e student v	will be able	to :		
Objective	S							
CO1		outline: basic h server side prog master pages, s	gramming co	ncepts, as	• • • •	-		
CO2		explain: tags in SSL, cookies model, controls	html, conce working, vi	epts of ja sual stud	io environ	ment, asp		
CO3		apply: html, asp	-				es.	
CO4 categorize: static and dynamic pages, client side and server								
	programming, server types, get post methods, asp.net controls, security models.						rols, security	
CO5		choose: static o	r dynamic pa	ages, clier	nt side or se	rver side p	rogramming,	
7.0°	SI	40			P4 Borb	*0		

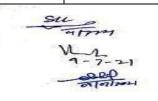
ALTA 4-7-21 9-7-21

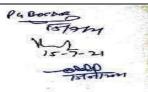
	se	rver typ	es, ge	t or po	st met	thod, a	sp.net	contr	ols, fo	rms au	thentic	ation.	
CO6	de	velop: v	web ap	oplicat	ion us	ing jav	vascrij	ot, htn	nl, asp	.net.			
	CO-]	PEO Ma	apping	g Matri	ix for (Course	e MCA	/GEN	/ 2/CC	14			
Cos		PEO1		PEO2			PEO3			PEO4		PEO5	
CO1		1		3	3		3			3		3	
CO2		2		3	3		3			3		3	
CO3		3		3	3		3			3		3	
CO4		3		3	3		3			3		3	
CO5		3		3	3		3			3		3	
CO6		3		3	3		3			3		3	
Average		2.5		3	3		3			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/2/CC14													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	3	1	-	-	-	-	
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3	1	3	1	-	3	3	-	-	-	-	
CO5	3	1	3	1	3	-	3	3	-	-	-	-	
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	
	СО-	PSO Ma	npping	g Matri	ix for (Course	e MCA	/GEN	/2/CC	14			
Cos]	PSO1		PSC	02		PSO3		PS	504	P	PSO5	
CO1		3		1			1			1		-	
CO2		3		2			2			2		-	
CO3		3		3			3			3		-	
CO4		3		3			3		3			-	
CO5		3		3			3		3			-	
CO6		3		3			3		3			-	
Average		3		2.:	5		2.5		2	2.5		-	


Ste Trans N.L. 9-7-21 ARD ATTIM

	MCA/GEN/3/CC15: Web Development								
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam Duration	Assessment Methods		
	Credit	Hours/Week	Mode	External	Internal				
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to get the students familiar with different concepts related with information architecture, HTML5 and XML for web development.

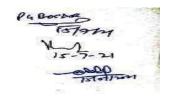

Course Outcomes	At the end of this course, the student will be able to:							
CO1	outline: information architecture, role of architect, collaboration, organizing information, navigation design, designing search interface, indexing, grouping content, conceptual design, html tags, layouts, basics of xml, html5 fundamentals.							



602			:		1			f	1- 14	4	- 11 - 1		
CO2	summarize: information architecture, role of architect, collaboration and organizing information, navigation design, designing search												
	interface, indexing, grouping content, conceptual design, html tags,												
	layouts, basics of xml, html5 fundamentals.												
CO3	-	llustrate: web application navigation, design architecture, html tags,											
		udio support in browser, style sheets, form controls, features & tructure of XML, relationship between html, sgml and xml, overview											
		f html5.											
CO4		ategorize: information system, navigation system, organization											
		ystem, different elements of html and xml, video format and binary											
CO5		rmat, attributes of xml objects, generation of web development. etermine: information system, navigation system, organization											
		termine: information system, navigation system, organization stem, different elements of html & xml, video format and binary											
		rmat, attributes of xml objects, generation of web development.											
CO6		reate: web applications using html and xml, development of web											
		ervices. PEO Manning Matrix for Course MCA/CEN/3/CC15											
	<u>-1 EO</u>	-PEO Mapping Matrix for Course MCA/GEN/3/CC15											
Cos	PE	PEO1 PEO2 PEO3 PEO4 PEO5											
CO1		1 3 3 3 3											
CO2		2 3 3 3 3										3	
CO3		3		3		3			3		3		
CO4		3		3		3			3			3	
CO5		3		3		3			3			3	
CO6		3		3		3			3			3	
Average	2	5		3		3			3			3	
C	O-PO	Mappi	ing Ma	ntrix fo	r Cou	ırse MC	CA/GE	N/3/C	C15				
COs													
	PO1	P02	PO3	P04	PO5	PO6	PO7	P08	P09	PO10	P011	P012	
	Р	Ъ	Ь	P	Ъ	P	Р	Ъ	P	PC	PC	РС	
CO1	1	3	1	1	1		3	1	_	_			
CO2	2	1	1	3	1	-	3	2	-	-	-	-	
CO3	3	1	1	3	3	-	3	3	-	-	-	-	
CO4	3	3 1 3 1 - 3 3 -								-	-	_	
	_												
CO5	3	3 1 3 1 3 - 3 3											
CO6	3	3	3	3	3	-	3	3	-	-	-	-	
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-	

Ste Total 1-7-21 ORD OTTAL

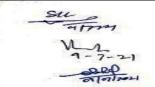
	CO-PSO Mapp	ing Matrix for	Course MCA/G	EN/3/CC15	
Cos	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	1	-
CO2	3	2	2	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	2.5	2.5	2.5	-
	MCA	Course C GEN/3/CC15: `	ontent Web Developme	ent	
	designing n navigation el systems, sear right stuff, to	veb sites and ir avigation syste ements, remote ching your web o search or not	ntranets, creating ms, types of navigation eleme site, designing	g cohesive organ navigation sys ents, designing e the search interf ping content, co	nization systems tems, integrated legant navigation ace, indexing the onceptual design
Unit - II	buttons, intro tables, advan support in positioning w	duction to layou ced layout: fran browsers, video vith style sheets.	nt: backgrounds, nes and layers, h o support, othe	colors and text, tml and other m er binary form	ssues, images as fonts, layout with ledia types. audio at. style sheets ad emerging form
Unit - III	XML declar formatting el type definitio XML relatio documents.	ation, element ement, table ele n (DTD), types. nship between ways to use X	tags nesting an ement, mark-up XML objects. HTML, SGML	d structure, XN element and attr , and XML, ba data files, embe	AL document, the AL text and tex ibutes, documen asic XML, valie dding XML inte ture of XML.
Unit - IV	technologies, exploring edi HTML docu document, ho Fundamental	HTML5 and its tors and browse ument, validatin osting web pages s of HTML: u	s essentials, next ers supported by ng an HTML e. nderstanding ele	t generation of v HTML5, creatin document, view ements- root ele	internet and web web development ng and saving an wing an HTMI ements, metadata ements, phrasing

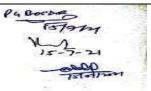


	elements, embedded elements, interactive elements, describing data types- RFC and IANA documentations, W3C specifications, immediate solutions.
	Text/Reference Books
Text Books	 Steven Holzner,"HTML Black Book", Dreamtech Press India Pvt. Ltd. 2000. Savaliya, Developing Web Applications, 2e, Wiley India Ltd Web Technologies - Black Book, Dreamtech Press India Pvt. Ltd.
Reference Books	 Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and Ajax, Black Book by Kogent, Wiley India Ltd. P.J. Deitel& H.M. Deitel, Internet and World Wide Web How to program, Pearson.

		MCA/GEN/3	8/CC16: IoT	& Cloud	Computing			
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/	
5					20 5 5		Attendance	

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2


Su



marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service models and security concerns, to learn core issues of Internet of Things, IOT communication protocols and security concerns.

Course	At the	end of	this co	urse, th	e stude	nt will	be able	to:					
Outcomes CO1	applica list/def	list/defineIoT: framework, architecture, design, communication challenges, applications, principles of web connectivity. list/define cloud computing: evolution, characteristics, working, service models, virtualization, architecture, security challenges and risks.											
CO2	unders challer unders	nderstand and describe IoT: framework, architecture, design, communication nallenges, applications, principles of web connectivity. Inderstand and describe cloud computing: evolution, characteristics, working, service odels, virtualization, architecture, security challenges and risks.											
CO3	use clo	e cloud computing services in different fields of applications.											
CO4	-	agrammatise IOT: framework, architecture, physical and logical design. agrammatise cloud computing: service models, service-oriented architecture.											
CO5	applica	rade/compareIoT: communication challenges, security issues, enabling technologies, oplication areas, and protocols. rade/compare cloud computing: service models. virtualization, and hypervisors.											
	CO	CO-PEO Mapping Matrix for Course MCA/GEN/3/CC16											
COs		PEO1 PEO2 PEO3 PEO4 PEO5											
CO1		1			3			1		3		3	
CO2		2			3			1		3		3	
CO3		3			3			1		3		3	
CO4		3			3			1		3		3	
CO5		3			3			1		3		3	
Average		2.4			3			1		3		3	
	С	O-PO]	Mappi	ing Ma	trix for	Cours	se MCA	/GEN/	/ <mark>3/CC1</mark>	6	1		
COs	PO1	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	
CO1	1	3	1	1	1	-	3	1	-	2	-	-	
CO2	2	1	1	3	1	-	3	2	-	2	-	-	
CO3	3	1	1	3	3	-	3	3	-	2	-	-	
CO4	2	1	1	3	1	-	3	3	-	2	-	-	
CO5	2	1	3	1	3	-	3	3	-	2	-	-	
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-	
	C	D-PSO	Mapp	ing Ma	trix fo	r Cour	se MC	4/GEN	[/3/CC]	16			

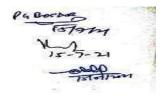
COs	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	3	3	1	-					
CO2	3	3	3	2	-					
CO3	3	3	3	3	-					
CO4	3	3	3	3	-					
CO5	3	3	3	3	-					
Average	3	3	3	2.4	-					
	Μ		urse Content 16: IoT& Cloud C	omputing						
Unit - I	frameworl examples	x, IoT architect of IoT, M2M co	ural view, techno ommunication, lay	ology behind IoT ered architecture (nt, IoT conceptual , sources of IoT, 3 & 5 Layered) of , security issues of					
Unit - II	Application health & energy con Design pri	ons of IoT: home fitness, smart en nservation. inciples for web c	e automation, smar avironment and ag connectivity: web c	riculture, supply c	and entertainment, chain and logistics, ocols for connected					
Unit - III	evolution computing	of cloud compo g works, role of no	uting, characterist etworks in cloud co	ics of cloud com	f cloud computing, puting, how cloud Id.					
Unit - IV	balancing Hyperviso	and virtualization	n. service oriented arc		rage, network, load					
		Text/F	Reference Books							
 Text Books Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010 										
Reference Books	Princi 2. Raj K Hill E	ples and Paradigr amal, Internet of ducation, 2017	ns, Wiley, 2011.	ures and Design F	Cloud Computing- Principles, McGraw					

MCA/GEN/3/DSC1(i) : Linux and Shell Scripts

Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
	Su Tai	- 7-21 2000 21 (7) 2011			P4 Borse 1379		

Optional	04	04	Lecture	70	3	0		3 Hours	
Theory					20	5	5		Assignment/ Attendance

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

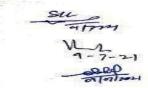

Course Objectives: The objectives of this course are to provide the in-depth coverage of various concepts of Linux. Linux administration is an essential course for the students.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	define and outline: basic requirements, features, essential commands of Linux, vi editors, processes scheduling, communication commands, simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities, processes, communication commands in Linux and operations performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing communication, regular expressions along with the simple and advanced filters.
CO4	categorize: the Linux commands, processes, priorities, communication commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular expressions and filters.

CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC1(a)

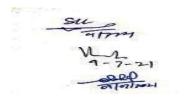
COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	3	3	1	3	3

	CO-PO Mapping Matrix for Course MCA/GEN/3/DSC1(a)											
COs	PO1	P02	P03	P04	PO5	P06	PO7	PO8	PO9	P010	PO11	P012
CO1	1	1	1	1	1	-	3	1	-	-	-	-



CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

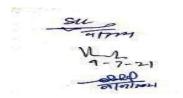
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC1(a)

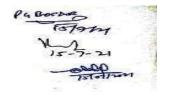

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

	Course Contents MCA/GEN/3/DSC1(a) : Linux and Shell Scripts
Unit I	Introduction, hardware requirements for Unix/Linux, salient features of Unix- multiuser capability, multitasking, communication, security, portability. Unix system organization, types of shells, Unix commands, the Unix file system, listing of files and directories, file permissions with chmod, disk related commands. Essential Unix/ Linux commands: cal, touch, file, file related commands, viewing files, taking printouts, file compression, the on-line Unix manual.
Unit - II	I/O redirection and piping, the vi editor, modes of operations in vi. processes in Unix/Linux: background processes, nohup command, killing a process, changing process priorities, scheduling of processes- the at command, the batch command, the crontab command. Communication: the write command, the wall command, motd command, mail- sending, handling incoming mail, customizing mail.
Unit - III	Simple Filters: the sample database, pr- paginating files, head, tail, cut, paste, sort, unique, tr, displaying a word-count list. Filters using regular expressions: grep – searching for a pattern, basic regular expression, extended regular expression. Sed: the stream editor, line addressing, using multiple instruction (-E and -F), context addressing, text editing, substitution(s), basic regular expression revisited.
Unit - IV	Awk: an advanced filter, simple awk filtering, splitting into fields, variables and expressions, the comparison operators, number processing, variables, the –f option, the begin and end sections, built-in-variables, arrays, functions.

P4 80 1377m 15-7-21 1stolium

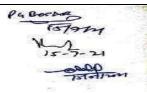
	Perl: the master manipulator- perl preliminaries, chop function, string handling functions, split, join, for each, lists and arrays, file handling, file tests, subroutines.
	Text/Reference Books
Text Books	 Sumitabha Das, Your Unix – The Ultimate Guide, Tata McGraw Hill, 2008. YaswantKanetkar, "Unix Shell Programming", BPB Publication, (2009).
Reference Books	 Matthew Neil, Stones Richard, Beginning Linux Programming, Wiley India Pvt. Ltd. Christopher Negus, Linux Bible, Wiley India Pvt. Ltd. Richard Peterson, Linux – The Complete Reference, Tata McGraw Hill

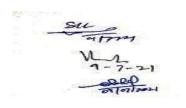

Course Type	Course	Contact	Delivery	Maximum Marks				Exam	Assessment Methods	
	Credit	Hours/Week	Mode	External	Internal		Duration			
Optional	04	04	Lecture	70	30 20 5 5			3 Hours	TEE/MTE/	
Theory								Assignment/ Attendance		

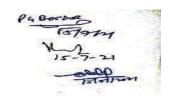

MCA/GEN/3/DSC1 (b) Android Software Development

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

Course Objectives: The objective of this course is to provide in-depth coverage of various concepts of android application development. This course will help the students in learning to develop and publish their own android applications.


Course Outcomes	At the end of the	is course, the stude	ent will able to	:							
CO1	define: android, features, development environment, architecture, software development platform and the framework related to android applications.										
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.										
CO3		demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.									
CO4	applications, d										
CO5	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.										
CO6	development p				ources and						
CO-PE	O Mapping Ma	trix for Course M	ICA/GEN/3/I	OSC1 (b)							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	3	1	3	3						
CO2	2	3	1	3	3						
CO3	3	3	1	3	3						
CO4	3	3	1	3	3						
CO5	3 3 1 3 3										
CO6	3	3	1	3	3						



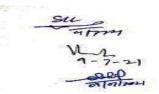

Average		2.5		3	3		1		3			3						
	CO-PO	Mappin	g Matr	ix for C	ourse M	ICA/G	EN/3/	DSC1	(b)									
COs	POI	P02	P03	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012						
CO1	1	1	1	1	1	-	3	1	-	-	-	-						
CO2	2	2	1	3	1	-	3	2	-	-	-	-						
CO3	3	3	1	3	3	-	3	3	-	-	-	-						
CO4	2	3	1	3	3	-	3	3	-	-	-	-						
CO5	2	3	3	1	3	-	3	3	-	-	-	-						
CO6	2	3	3	1	3	-	3	3	-	-	-	-						
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-						
	CO-PSO	Mappir	ng Mat	rix for (Course N	ICA/(GEN/3	/DSC1	l (b)									
COs		PSO	D1	PS	02	I	PSO3		PSO4		PS	505						
CO1		3		2	3		3		3		3		1			-		
CO2		3			3		3		3		2		2		2			-
CO3		3			3		3		3		3			-				
CO4		3	;	3	3		3 3		3			-						
CO5		3			3		3		3					-				
CO6		3			3		3		3			-						
Average	9	3			3		3		2.5			-						
	MCA/	GEN/3/		Course C b) Andı	Content coid Soft	ware	Develo	opmen	t									
Unit - I	Introduct application Android installing (IDE), cr	on store Develo g Java, a	opment and AI	Enviro DT bund	onment: lle, eclij	syste pse in	em re tegrate	quirei	nents,	And	lroid	SD						
Unit - II	project n launcher stopping	(IDE), creating Android Virtual Devices (AVDs). Android Architecture Overview, creating a new Android project, defining the project name and SDK settings, project configuration settings, configuring the launcher icon, creating an activity, running the application in the AVD, stopping a running application, modifying the example application, reviewing the layout and resource files.																
Unit - III	Virtual	Machin	e, The	directo	stopping a running application, modifying the example application, reviewing the layout and resource files. Android software development platform, understanding Java SE and the Dalvi Virtual Machine, The directory structure of an Android project, commo default resources folders, screen sizes, launching your application.													
			, 101401	5, 50100	in sizes,	iuuiie	Jinng J	0 41 4	pp									

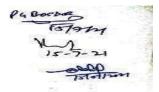
Su 41774 4-7-21 9-7-21 000

	activities: defining the UI, Android services: processing in the background Android Manifest XML: declaring your components, understanding Android views, view groups and layouts, Graphical User Interface screen with views displaying pictures, files, content providers, and databases.									
Text/Reference Books										
Text Books	 Burton Michael, Android App Development for Dummies, Wiley, 2015. Wei-Meng Lee, Beginning Android 4 Application Development, Wiley India (Wrox), 2013. John Horton, Android Programming for Beginners, Packet Publishing, 2015. 									
Reference Books	1. Ian F. Darwin, Android Cookbook Problems and Solutions for Android Developers, 2e, O'Reilly,2017.									

MCA/GEN/3/DSC2 (a): Network Security

Course Type	Course	Contact	Delivery	5		Exam	Assessment
	Credit	Hours/Week	Mode			Duration	Methods
Optional Theory	04	04	Lecture	70	30 2 5 0	3 Hours	TEE/MTE/ Assignment(s)/ Attendance


Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.


Course Objectives: To study fundamental concepts in Network Security, security attack, cryptography, authentication, web security, system and email security.

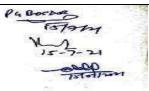
Course Outcomes	At the end of this course, the student will be able to :
C01	define: computer security, security standards, cipher model, encryption
	techniques, data encryption standards, public-key cryptography, security at
	transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.
CO2	explain: computer concepts related with the security, symmetric techniques,
	advanced encryption standard, RSA, concept of digital signature, security
	protocols, wireless security measures and email security.
CO3	illustrate: the different features related with computer security, encryption and
	symmetric techniques, data encryption standards, security at transport layer
	and wireless LAN security.
CO4	classify: the information about security, its architecture, types of attacks,
	security mechanism, encryption standards, protocols at transport layer and
	wireless LAN security.
CO5	evaluate: the security trends, security mechanisms, cipher model, RSA, Diffie-
	Hellman key exchange, transport layer security, SSL/TSL attacks, wireless
	security and IP security.

CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2(a)

COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3

CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3

CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)


COs	POI	PO2	P03	P04	PO5	PO6	PO7	P08	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

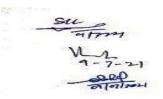
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (a)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-

	Course Content MCA/GEN/3/DSC2 (a): Network Security						
Unit – I	Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.						
Unit – II	Traditional block cipher; data encryption standard – encryption and decryption, advanced encryption standard – structure and expansion functions. Public-key cryptography – principles, applications and requirements; RSA, Diffie- Hellman key exchange. Concept of digital signature.						
Unit – III	Security at Transport Layer, web security considerations, Transport Layer Security, TLS record protocol, change cipher spec protocol, alert protocol, handshake protocol, heart-beat protocol;						

Su

	SSL/TSL attacks; HTTPS; Secure shell; user authentication protocol, connection protocol.					
Unit – IVWireless Security, wireless security measures, mobile device security - threats an strategy. Wireless LAN security, IEEE 802.11i - services, operation and phases. Email security, S/MIME, PGP, overview of IP security.						
Text/Reference Books						
Text Books	 William Stallings, Cryptography And Network Security Principles And Practice, Pearson Education Forouzan, Mukhopadhyay, Cryptography & Network Security, McGraw Hill 					
Reference Bo	 AtulKahate, Cryptography and Network Security, TMH Godbole, Information Systems Security, Wiley India Mark Stamp, Information Security Principles and Practice, Willy India 					


MCA/GEN/3/DSC2 (b): Wireless Network

Course Type	Course	Contact	Delivery	Maximu	m N	1ark	S	Exam	Assessment
	Credit	Hours/Week	Mode	External	In	tern	al	Duration	Methods
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/
					20	5	5		Attendance

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

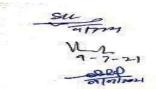
Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.

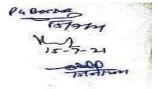
Course Outcomes	At the end of this course, the student will be able to:						
C01	define: wireless LAN, architecture, mobile network layer, mobile						
	transport layer and wireless wide area network.						
CO2	describe: WLAN technologies, IEEE 802.11 types , IEEE 802.16,						
	Bluetooth, IPV6, mobile ad-hoc network, TCP enhancements for wireless						
	network, UTMS, 3G-MSC, 3G-SGSN, 3G-GGSN, applications of 4G,						
	features and challenges of 5G.						
CO3	illustrate: wireless LAN, system architecture, physical layer, Mac layer,						
	Bluetooth architecture, mobile IP, mobile ad-hoc network, mobile						
	transport layer, TCP improvements, wireless wide area network, HSDPA,						
	features and challenges of 4G, 5G.						
CO4	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6,						
	Routing, TCP enhancements, TCP improvements, UMTS core network						
	architecture, firewall, 3G, 4G and 5G networks.						

CO5 compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.

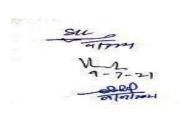
CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

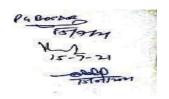
COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
Average	2.4	3	1	3	3


CO-PO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)


COs	P01	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO3	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-
CO5	2	1	3	1	3	-	3	3	-	2	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-

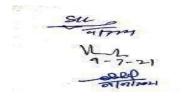
CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC2 (b)

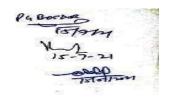

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	-
CO2	3	2	3	2	-
CO3	3	2	3	3	-
CO4	3	2	3	3	-
CO5	3	2	3	3	-
Average	3	2	3	2.4	-


Course Content MCA/GEN/3/DSC2 (b) : Wireless Network
Wireless LAN: Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer, Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX.

Unit - II	Mobile Network Layer: Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet-Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing.				
Unit - III	Mobile Transport Layer :TCP enhancements for wireless protocols - Traditional CCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G vireless networks.				
Unit - IV	Wireless Wide Area Network: Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol, features and challenges of 4G, Applications of 4G, Introduction to 5G vision,5G features and challenges.				
	Text/Reference Books				
Text Books	 Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007. 				
Reference Books	 William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013. 				

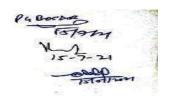
	MCA/GEN/3/DSC3 (a): Discrete Mathematics						
Course	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
Theory					20 5 5		Attendance


Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.


Course Objectives: This course is aimed at making the students familiar with various discrete structures, operations performed thereupon and their implementation mechanism.

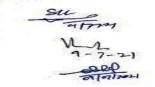
Course Outcomes	By the end of this course, the student will be able to
CO1	define: sets and elements, introduction and representation of relations, types
	of functions, graphs and multigraphs, Boolean algebra, group, and subgroups
CO2	describe and discuss: inclusion-exclusion principle, finite and Infinite sets.,
	types & composition of relations, types of graphs, sorting and searching,
	Boolean algebra and groups.

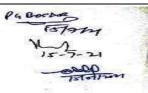
CO3		algebra a	solve: various mathematical problems related to sets, graphs, Boolean algebra and groups, directed and undirected graphs, basic logical operations on propositions and truth tables.									
CO4	:	illustrate: multigrat	sets an	d eleme	nts, rep	oresenta			-	-		ns and
CO5		determin multigrap	e: com	plex pro	blem	related	to se	ts and	l elem	-		s and
	~ ~ ~ ~ ~											
	CO-PI	EO Mapp									DEC	_
COs CO1		PEO	1	PEO 3	2	PE		P	EO4 3		PEO:)
		1				1						
CO2		2		3		l			3		3	
CO3		3		3		1			3		3	
CO4		3		3		1			3		3	
CO5		3		3		1			3		3	
Average		2.4		3		1			3		3	
CO-PO Mapping Matrix for Course MCA/GEN/3/DSC3 (a)												
COs	P01	P02	P03	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1		3					
CO1 CO2	2	1	1	3	1		3					
CO3	3	1	1	3	3		3	_	_	_	_	-
CO4	2	1	1	3	1		3	_	_	_	_	
CO5	2	1	3	1	3	_	3	-	-	_	_	-
Average	2	1.4	1.4	2.2	1.8	- 3		-			_	_
C	O-PS	O Mapp	ing Ma	trix fo	Cour	se MC	A/GE	N/3/D	SC3 (a	ı)	I	ļ
COs			PSO1	P	SO2	P	SO3	F	PSO4		PSO	5
CO1			3		1		3		1		-	
CO2			3		1		3		2		-	
CO3			3		1		3		3		-	
CO4			3		1		3		3		-	
CO5			3		1		3	3			-	
Averag	ge		3		1		3		2.6		-	
		I		Course	Conte	nt		1				


MCA/GEN/3/DSC3 (a): Discrete Mathematics

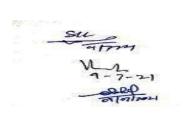
Unit - I	Sets and elements, inclusion-exclusion principle, finite and Infinite sets, power sets, multisets, introduction and representation of relations, types of relations, composition of relations: introduction to functions, types of functions.
Unit - II	Graphs and multigraphs, sequential and linked representation of graphs, Directed and Undirected graphs: Types of graphs, labelled and weighted graphs, complete, regular and bipartile graphs, planar graphs, tree graphs, paths, connectivity, depth first search, breadth first search, topological sort.
Unit - III	Boolean algebra, basic definitions, duality, truth tables, boolean functions, basic logical operations on propositions, proposition and truth tables, tautologies and contradictions, algebra of propositions, rules of inference.
Unit - IV	Group and subgroups, semigroups groups, normal subgroups, homomorphisms, rings, integral domain and fields, ordered sets, hasse diagram of partially ordered sets, lattices, bounded lattices, distributive lattices, complemented lattices.
	Text/Reference Books
Text Books	 Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, McGraw- Hill International Editions, Schaum's Series. Bernard Kolman, Robert C. Busbym, Discrete Mathematical Structures for Computer Science, Prentice-Hall of India Pvt. Ltd.
Reference Books	 Alan Doerr, Kenneth Levaseur, Applied Discrete Structures for Computer Science, Galgotia Publication Pvt. Ltd. Kennech G. Rosen, Discrete Mathematics and its Applications, McGraw- Hill International Editions, Mathematics Series.

Ste atras 9-7-21 Step atras


	MCA/GEN/3/DSC3 (b): Theory of Computation									
Course	Course	Contact	Delivery	Maximu	ım Ma	ırks		Exam	Assessment	
Туре	Credit	Hours/ Week	Mode	External	Internal			Duration	Methods	
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/	
					20	5	5		Attendance	

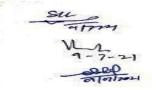

Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

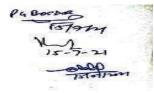
Course Objectives: to understand fundamental concepts of finite automata, regular grammar, mealy and Moore machine, context free language and grammar their properties, context free language and grammar.


Course Outcomes					rse, the							
CO1					-			-	oushdov			
					•		ontext f	free lan	guage &	& gran	nmar, c	context
			<u> </u>		gramma							
CO2			-					•	mmar, p			
					erminis				ministic			omata,
~~~			-					_	Turing			
CO3									ılar, pus			
CO4					<u> </u>	Ŭ			lve basi free gr			
04		•				•			orms, p			
	-	ng ma			ioiti ve	Sramm	iui, 1101	intar iv	лшэ, р	usiido	wii uut	omata,
CO5		<u> </u>		ntrast:	NFA 8	b DFA.	mealy	and M	oore ma	chine	,CNF&	c GNF,
	languages, grammars, different automatas, Turing machine.											
CO-PEO Mapping Matrix for Course MCA/GEN/3/DSC3 (b)												
COs	PI	EO1		PEC	02	]	PEO3		PEO4		PE	05
CO1		1		3			1		3		3	
CO2		2		3			1		3		3	
CO3		3		3			1		3		3	
CO4		3		3			1		3		3	
CO5		3		3			1		3		3	
Average	2	2.4		3			1		3		3	
CO	<b>-PO</b> 1	Mappi	ng Ma	atrix	for Cou	urse M	[CA/G]	EN/3/I	SC3 (b	)		
COs			ĺ						_	0	_	2
	PO1	PO2	P03	P04	PO5	P06	PO7	P08	P09	P010	P01]	P012
		Ц	щ	щ						Р	Р	Р
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-

[												
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
С	O-PSO	Марр	ing M	[atrix	for Co	ourse N	ICA/G	EN/3/I	DSC3 (I	b)		
COs	]	PSO1		PS	02	P	SO3		PSO4		PS	05
CO1		3 1 3 1 -										
CO2		3	Ì	1		Ì	3		2		-	
CO3		3		1			3		3		-	
CO4		3		1			3		3		-	
CO5		3		1			3		3		-	
Average		3		1			3		2.6		-	
Course Content           MCA/GEN/3/DSC3 (b): Theory of Computation           Unit - I         Finite Automata: Deterministic and non-deterministic finite automata,												
Unit - 1	Finite Automata: Deterministic and non-deterministic finite automata, applications of finite automata, equivalence of deterministic and non- deterministic finite automata, state minimization of DFA, Kleen's characterization theory for sets accepted by finite automata, regular grammar, mealy and Moore machine.											
Unit - II	appl Push dete	ication Idown rminist	of co Aut ic p	ntext : omata ushdo	free gra i: De	ammars termini utomat	, ambi stic j	guity in pushdov	gramm	hars an Itomata	d langu a and	-
Unit - III	pump langu	ping le lages, o ext Se	mma decisio	for co on pro	ontext-f	free gra	ummars text fre	s, closu ee langu	re prop lages.	erties	of cont	ammars, ext-free erties of
Unit - IV												
			T	'ext/R	eferen	ce Boo	ks					
Text Books	2. H	McGra	w Hill Linz,	An ir	troduc		0	•		•	•	outation,
Reference Books	1	Automa	ata, Pe	earson	Educa	tion.			-			ation to eory of
2	au p							P4 Bos	·Der	2		



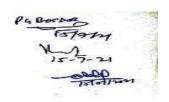




<ul><li>computation, PHI Learning.</li><li>3. Michael Sipser, Introduction to the Theory of Computation, Cengage Learning.</li></ul>								
		MCA/GEN/	3/DSC3 (c): (	Compiler	Constructi	ion		
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30 20 5	3 Hours	TEE/MTE/ Assignment/ Attendance	
questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit. Course Objectives: To study fundamental concepts of compiler, interpreters, assemblers, lexical analysis, syntax analysis, intermediate code generation and code optimization techniques used in								
compiler desig Course Ou		At the end of	this course the	he student i	vill be able	e to:		
Course Ou CO1							optimization,	
		code generatio					optimization,	
CO2		explain: basic	s of compiler of lexical a	rs, interpret nalysis, syı	ers, assem		er construction grammar, code	
CO3		illustrate: var	ious analysis sis, optimizat	-synthesis ion of basi	e blocks, l	oops optimiza	exical analysis, ation, peephole c graphs.	
CO4		analyze: phas	e of compila parser gene	tion, finite	state auto	mata recogni	tion of regular of code and	
CO5			process of syn	itax analysi			tate automata formations and	
	CO-F	PEO Mapping	Matrix for C	Course MC	A/GEN/3/	/DSC3 (c)		
COs	1	PEO1	PEO2	1	03	PEO4	PEO5	
CO1		1	3			3	3	
CO2		2	3			3	3	
CO2		3	3		•   	3	3	
C03						3	3	
		3	3					
CO5		3	3			3	3	
Averag		2.4 PO Mapping N	3 Matrix for Co	ourse MCA	 A/GEN/3/]	3 DSC3 (c)	3	





COs		PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012
CO1		1	3	1	1	1	-	3	-	-	-	-	-
CO2		2	1	1	3	1	-	3	-	-	-	-	-
CO3		3	1	1	3	3	-	3	-	-	-	-	-
CO4		2	1	1	3	1	-	3	-	-	-	-	-
CO5		2	1	3	1	3	-	3	-	-	-	-	-
Average		2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
	CO-PSO Mapping Matrix for Course MCA/GEN/3/DSC3 (c)												
COs		]	PSO1		PSO	2	PS	503		PSO4		PS	05
CO1			3		1			3		1			-
CO2			3		1			3		2			-
CO3			3		1			3		3			-
CO4			3		1			3		3			-
CO5			3		1			3		3		-	
Average		3 1 3 2.6 -							-				
Unit - I	of too Ley	roduc comp ls. kical	tion to pilation	Comp , analy is: Pro	oilers: ysis-sy	Basics nthesis	of co s mod	el of t	s, inter transla	rpreters tion, c	ompil	er cons	, phases struction
Unit – II	-		•			•		•		of gran	nmars,	top-do	own and
Unit – III	bottom-up parsing techniques, Parser generator.Intermediate Code Generation: Intermediate languages, generating intermediate code for assignment statement, Boolean expression, and case statement.Code Optimization: Introduction to code optimization, potential cases of code optimization, optimization of basic blocks, loops optimization, code improving transformations.												
Unit – IVCode Generation: Basics, dynamic storage management, translating basic blocks, a simple code generator, peephole optimization, directed acyclic graphs and basic blocks code generation from directed acyclic graphs. Syntax Directed Translation: Overview of syntax directed translation scheme.													
				Te	xt/Refe	erence	Book	5					
Text Books	1. 2.	Aho										ng Hou 'ools, F	ise. Pearson






Reference Books 1 2 3 4	<ul> <li>Dhamdhere D.M, System programming and operating system, McGraw Hill.</li> <li>Beck L. Leland, System Software, Pearson Education.</li> <li>Fischer, Crafting a Compiler in C, Pearson Education.</li> <li>Jean Paul Tremblay and Sorenson, The Theory and Practice of Compiler Writing, McGraw Hill.</li> </ul>
----------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

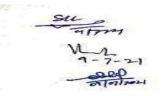
MCA/GEN/3/CC17: Software Lab based on MCA/GEN/3/CC15(Web Development)								
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File	
<b>Instructions to</b> conducted by a p practical file, per	anel of in	ternal and ext	ernal examin	ers. Exami				
<b>Course Objectives:</b> The objective of this course is to get the students hands on practice with the concepts of web development/programming covered in course MCA/GEN/3/CC15.								
Course		the end of thi	s course, the	e student v	will be able	to:		
Outcomes								
CO1 CO2 CO3	inf gro htr sur org ind of	outline: information architecture, its role collaboration, organizationinformation, design navigation, designing search interface, indexing,grouping content, conceptual design, html tags, layouts, basics of xml,html5 fundamentals.summarize: information architecture, its role collaboration andorganization information, design navigation, designing search interface,indexing, grouping content, conceptual design, html tags, layouts, basicsof xml, html5 fundamentals.						
	aud stru of	lio support ucture of XM html5.	in browser, IL, relations	, style sł hip betwe	ets, form en html, sg	controls, gml and x	e, html tags, features & ml, overview	
	CO4 categorize: information system, navigation system, organization system, different elements of html and xml, video format and binary format, attributes of xml objects, generation of web development.							
CO5	determine: information system, navigation system, organization system, different elements of html & xml, video format and binary format, attributes of xml objects, generation of web development.							
CO6	ser	vices.				· · ·	ment of web	
	CO-PEO Mapping Matrix for Course MCA/GEN/3/CC17							

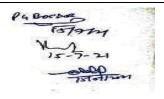




Car	<u>п</u>			DEC	<b></b>	1	DEO		DEC	1	PEO5	
Cos		PEO1		PEC			PEO3	1	PEC	)4		
CO1		1		3			3		3			3
CO2		2		3			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3			3
CO5		3		3		Ì	3		3			3
CO6		3		3		Ì	3		3			3
Average		2.5		3		ĺ	3		3			3
	CO-P	O Ma	pping	Matri	x for (	Course	e MCA	GEN/	3/CC17			
Cos												
	PO1	PO2	P03	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012
	Ч	Ч	Ч	Ч	Ч	Ч	L L		L	PQ	Pe	Pe
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	3	1	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.66	2.33	2	-	3	2.5	-	-	-	-
	CO-P	SO Ma	apping	, Matr	ix for	Cours	e MCA	/GEN/	/3/CC17		I	
Cos	Р	SO1		PSO	2		PSO3		PSC	04	PS	505
CO1		3		1			1		1			-
CO2		3		2			2		2			-
CO3		3		3			3		3			-
CO4		3		3			3		3			-
CO5		3		3			3	ĺ	3			-
CO6		3		3			3		3		-	
Average		3		2.5			2.5		2.5		-	

NL 9-7-21 Dep


#### MCA/GEN/3/CC18 (i): Software Lab based on MCA/GEN/3/DSC-1 (i) (Linux and Shell Scripts)


Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment
	Credit	Hours/Wee k	Mode	External	Internal	Duration	Methods
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands on practice with scripting/programming concepts of Linux and Shell script as covered in course MCA/GEN/3/DSC1 (i)

Course Outcomes	At the end of this course, the student will be able to :
CO1	define and outline: basic requirements, features, essential commands of
	Linux, vi editors, processes scheduling, communication commands,
	simple (grep, sed) and advanced filters (awk, perl).
CO2	explain: the organization, file system, Shells, file permissions, priorities,
	processes, communication commands in Linux and operations
	performed by the simple as well as advanced filters.
CO3	perform: operations in Linux, modes of operations in vi, mailing
	communication, regular expressions along with the simple and advanced
	filters.
CO4	categorize: the Linux commands, processes, priorities, communication
	commands, simple and advanced filters using regular expressions.
CO5	compare: shells, file permissions, processes, command with different
	options, simple filters like grep, sed and advanced filters like awk, perl.
CO6	create: Linux shell scripts showing the use of commands, regular
	expressions and filters.





COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

## CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

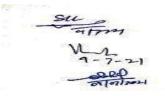
#### CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

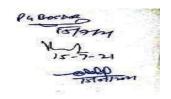
					1				( )	,	1	· · · · · · · · · · · · · · · · · · ·
COs	PO1	P02	P03	P04	P05	P06	PO7	P08	P09	P010	P011	P012
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (i)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-
CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

1373M 00


# MCA/GEN/3/CC18 (ii): Software Lab based on MCA/GEN/3/DSC-1 (ii) (Android Software Development)


Course Type	Course	Contact	5		ım Marks	Exam	Assessment	
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods	
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File	

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

**Course Objectives:** The objective of this course is to get the students hands on practice with scripting/programming concepts of Android programming/development as covered in course **MCA/GEN/3/DSC1 (ii).** 

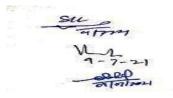
Course Outcomes	At the end of this course, the student will able to:						
CO1	define: android, features, development environment, architecture, software development platform and the framework related to android applications.						
CO2	explain: versions of android, architecture, software development platform, JAVA SE, the Dalvik virtual machine and various android services.						





CO3	demonstrate: android SDK, IDE, AVDs, project configuration settings, directory structure of android project, activities and services of android.
CO4	illustrate: android versions, features, system requirements, applications, directory structures, resource folders, android services, screen sizes and android framework.
CO5	compare and contrast: android versions with their functions, types of android applications, development platforms, layout of android applications, activities associated with android and user interfaces.
CO6	create: android applications using different types of resources and development platforms.

CO-PEO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)


COs	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	3	1	3	3
CO2	2	3	1	3	3
CO3	3	3	1	3	3
CO4	3	3	1	3	3
CO5	3	3	1	3	3
CO6	3	3	1	3	3
Average	2.5	3	1	3	3

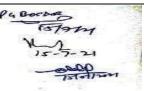
CO-PO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	P010	P011	P012
CO1	1	1	1	1	1	-	3	1	-	-	-	-
CO2	2	2	1	3	1	-	3	2	-	-	-	-
CO3	3	3	1	3	3	-	3	3	-	-	-	-
CO4	2	3	1	3	3	-	3	3	-	-	-	-
CO5	2	3	3	1	3	-	3	3	-	-	-	-
CO6	2	3	3	1	3	-	3	3	-	-	-	-
Average	2	2.5	1.66	2	2.33	-	3	2.5	-	-	-	-

# CO-PSO Mapping Matrix for Course MCA/GEN/3/CC18 (ii)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	-
CO2	3	3	3	2	-
CO3	3	3	3	3	-
CO4	3	3	3	3	-



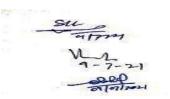

CO5	3	3	3	3	-
CO6	3	3	3	3	-
Average	3	3	3	2.5	-

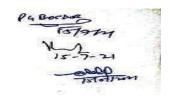
MCA/Gen /3/SEC1: Presentation/Viva on Internship/Summer Training								
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Internship/ Summer Training	04	-	Internship/ Training	100	-	-	Training Report/ Viva Voce	

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of the Internship/Training Report and a presentation based viva voce exam during third semester of MCA/GEN.

**Course Objectives:** To expose students to real work of environment experience and at the same time, to gain the knowledge through hands on observation and job execution and allows them to relate the theory to practice. The interns/trainees will also develop skills in work ethics, communication, management and others.

<b>Course</b> At the end of this course, the student would be ab	ole to:
------------------------------------------------------------------	---------

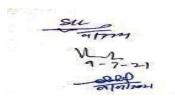


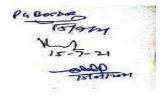


Outcomes													
CO1		recognize and define (i) the gaps and interface between the academia and the industry, (ii) nitty-gritty of work culture of industry, and (iii)											
		ethics and the best practices of industry.											
CO2		understand and describe (i) the academia-industry interface, (ii) work											
		culture in the industrial setup as a lifelong skill, (iii) the ethics and the											
CO3		best practices of the industry. apply the best practices and the information/knowledge gained thus far											
005		acaden		ласис			morm	ation/	KIIUWI	euge ga	uneu u	ius ia	
CO4				erence	es betv	veen v	vork p	oractic	es and	work	enviror	nment	
		acaden											
CO5		mpare ademia		ork p	ractice	es and	work	c envi	ronme	ents of	indust	ry and	
				Matri	v for (	OURSO	МСА	Con	/3/SF	C1			
CO-PEO Mapping Matrix for Course MCA/Gen /3/SEC1CosPEO1PEO2PEO3PEO4PEO5													
CO1		1		3				,	11	3	1	3	
		-					3						
CO2	Ì	2		3			3			3	3		
CO3		3		3			3			3		3	
CO4		3		3			3		3		3		
CO5		3		3			3		3			3	
Average		2.4		3			3		3			3	
	CO-I	PO Map	oping N	Matrix	for C	ourse	MCA/	/Gen /	3/SEC	C <b>1</b>	I		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	2	3	3	3	3	3	3	-	3	3	
CO2	2	2	2	3	3	3	3	3	3	-	3	3	
CO3	3	2	2	3	3	3	3	3	3	-	3	3	
CO4	3	2	2	3	3	3	3	3	3	-	3	3	
CO5	3	2	2	3	3	3	3	3	3	-	3	3	
Average	2.4	2	2	3	3	3	3	3	3	-	3	3	
	CO-P	SO Ma	nning	Matri	v for (	ourse	МСА	/Gen	/3/SE(	C1			
Cos							PSO3			504	P	PSO5	
CO1		3		PSO2 3			3		3			3	
CO2	<u> </u>	3		3			3		3			3	
CO3		3		3			3		3			3	
CO4		3		3			3		3			3	
-		3		3			3		3		3		
CO5		5											

SU 1-7-21 2000 21-7-21

MCA/GEN/4/CC19:Python Programming											
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/A				
					20 5 5		ttendance				

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise



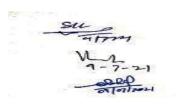

comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

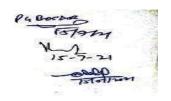
**Course Objectives:**The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

Course	At the end of this course, the student will possess an understanding of:											
Outcomes												
CO1	define:installations,working,structures,controlstatements,operators,lists,										lists ,	
	object oriented programming concepts, python libraries.											
CO2	explain: conditional & control statements ,strings, OOPs ,file handling concepts ,libraries and packages of python programming.											
CO3					package raries su						0.0	
003			1.		ming co		1.		-	· <b>I</b>		C.
CO4					ctionarie							
001		-	librarie	-	etionari		lattion	uicee	1111015	lutenn	,110 <b>,</b> 10	neuo
CO5	com											
		types,c	liction	aries,c	condition	nal&c	control	staten	nents,f	unctio	ns,pyt	hon
CO6	desig	gn:bas	ic and	advan	ced app	licati	ons in j	oytho	1.			
	CO-PE	O Ma	pping	Matrix	for Cou	irse N	/ICA/G	EN/4/	CC19			
Cos		PEO1		Pl	EO2		PEO3		PEC	94	PEO5	
CO1		1			3	3			3		3	
CO2		2			3	3		Í	3		3	
CO3	3				3 3			3		3		
CO4	3				3		3		3			3
CO5		3			3	3			3		3	
CO6		3			3	3			3			3
Average		2.5			3		3	3			3	
	CO-PO	O Map	ping N	latrix	for Cou	rse M	[CA/GI	EN/4/0	CC19			
COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	1	3	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-
	CO-PS	O Maj	pping 1	Matrix	for Cou	rse N	ICA/G	EN/4/	CC19			
COs		PSO1		Р	PSO2 PSO3				PSC	94	PSO5	
CO1		3			1		1		1			-





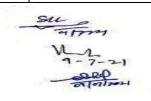

CO2		3	2	2	2	-			
CO3		3	3	3	3	-			
CO4		3	3	3	3	-			
CO5		3	3	3	3	-			
CO6		3	3	3	3	-			
Average		3	2.5	2.5	2.5	-			
		MCA/GEN/	Course Conte 4/CC19: Pythor	nt 1 Programming					
Unit – I       Installation and Working with Python, Using Help, Structure of a Python Program, Control flow, Interpreter shell, Tokens, Identifiers, Reserved keywords, Literals, Variables, Python basic Operators, Declaring and using Numeric data types: int, float, complex, using string data type. Python Casting, Scope of a Variable, Working with: String, List, Tuples and Dictionaries.									
Unit – II Conditional blocks using if, else and elif, For loops in python, While loops, Continue, Break and Else, organizing python codes using functions, Modules: Creating Module, using Modules and Built-in Modules. Packages: Package Types, Importing Package, Viewing Package Content and Documentation. Powerful Lambda Function in python, Programming: Using Functions, Modules and Packages.									
Unit – III	Object Oriented Programming: Concept of Class, Object and Instances, Constructor, Class Attributes and Destructors, Built-in Class Attributes, Inheritance, Method Overriding, Data Encapsulation, Overloading Operators, Data Hiding, Exception Handling, Programming using Oops concepts. File Handling: Creating, Opening, Closing, Writing & Reading File Content, Deleting a File. Programming using file operations.								
Unit – IV									
Text/Reference Books									
Text Books	<ol> <li>Chun, J Wesley, Core Python Programming, 2e, Pearson, 2007.</li> <li>E. Balagurusamy, Introduction to Computing and Problem Solving Using Python, McGraw Hill Education, 2016.</li> </ol>								
Reference Books		Barry and Paul, Hea Lutz and Mark, Lear	•	•	0.				

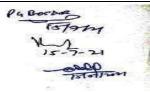

MCA/GEN/4/CC20: R Programming										
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment			
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods			
	Su	Enni A			P4 Bors 62 VL 15	20				
	-	al or lorizon			8	- Istellion				

Compulsory Theory	04		04		Lectur	·e	70	20	30 5 5			rs TEE/MT Assignme Attendan	
<b>Instructions to paper setter for Final-Term Examination:</b> The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The condidates are required to attempt													
comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.													
Course Objectives: To study the fundamental concepts in R programming language, data types,													
	operators, decision making statements and iteration, functions, different data structures like list, vectors, matrices, data frames, charts and graphs, graphics functions and statistical analysis.												
			-							•			
Course Outcome		Atu	ie end	or uni	s cour	se, me	stude	iit wiii	be able				
CO1	es	lict ·	data ti	mee	functi	one in	R nro	aramn	ning, vi	icualiz	vation		
CO1				<u> </u>			-	<u> </u>	statem			user d	efined
			tions,u					aking	statem	cinto, i	loops,	user u	cifficu
								expor	rt of da	ata in	text fi	le. exc	el file
		explain: the process of import and export of data in text file, excel file and MYSQL.											
CO3		use: various in built ,user defined function and packages .											
		apply: R programming constructs to solve real world problems.											
CO4		categorize:datatypes,conditional & control statements, in built and user											
		defined functions and packages.											
CO5		compare: datatypes, conditional & control statements, functions,											
		packages in R programming. design:basic and advanced applications in R programming.											
CO6		-	-							-			
	C	O-PE	EO Maj	pping	Matri	ix for (	Course	MCA/	GEN/4	/CC20	)		
COs		P	EO1		PEC	02	I	PEO3		PEO4		PEC	05
CO1			1		1			3		3		3	
CO2			2		2			3		3		3	
CO3			3		3			3		3		3	
CO4			3		3			3				3	
CO5			3		3			3		3		3	
CO6			3		3			3		3		3	
Average	;	4	2.5		2.5	5		3		3		3	
CO-PO Mapping Matrix for Course MCA/GEN/4/CC20													
COs		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	3	1	1	1	-	-	-	-	-	1	3
CO2		2	1	1	3	1	-	-	-	-	-	2	3
CO3		3	1	1	3	3	-					3	3
CO4		3	3	1	3	1	-	-	-	-	-	3	3
CO5		3	1	1	3	3	-	-	-	-	-	3	3
CO6		3	3	3	3	3	-	-	-	-	-	3	3
Average	:	2.5	2	1.3	2.6	2	-	-	-	-	-	2.5	3
	200					•			Py Bos			272	J

SU 1-7-21 2000 21-7-21

CO-PSO Mapping Matrix for Course MCA/GEN/4/CC20										
COs	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	3	1	-	3					
CO2	3	3	2	-	3					
CO3	3	3	3	-	3					
CO4	3	3	3	-	3					
CO5	3	3	3	-	3					
CO6	3	3	3	-	3					
Average	3	3	2.5	-	3					
Course Content MCA/GEN/4/CC20: R Programming										
Unit - I Basic of R: Introduction to R, Features of R, Variables in R, In-Built Functions in R (mathematical, trigonometric, logarithmic, Date and Time, Sequence, I/O). Data Types in R: Vectors, Matrices, Arrays, Lists, Factors, Data Frames.										
Unit - II Programming in R: Decision making structures (if, Switch), Loops (For, while, repeat), User Defined functions (with argument without argument), User Defined Package. Reports using remark down (direct rendering, in-direct rendering).										
Unit - III										
Unit - IV										
		Text/Refere	nce Books							
<ul> <li>Text Books</li> <li>1. Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis - with Exercises, Solutions and Applications in R, Springer, 2016.</li> <li>2. Pierre Lafaye de Micheaux, RémyDrouilhet, Benoit Liquet, The R Software- Fundamentals of Programming and Statistical Analysis, Springer 2013.</li> </ul>										
Reference Books		ur, Elena N. Ieno Springer 2009.	o, Erik H.W.G. M	leesters, Use R	- A Beginner's					



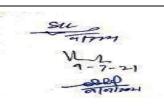

		MCA/	GEN	N/4/DS	C4(a):	Soft C	ompu	ting				
Course Type	Course	Contact		Delivery	7	Maxim	num M	larks		xam	Asse	ssment
	Credit	Hours/ Week		Mode	E	xternal	In	iternal	Du	ration	Met	thods
Optional Theory	04	04	]	Lecture	;	70	20	30	3 I 5	Hours	Assig	/MTE/ mment/ ndance
questions in all. marks each cove comprising of tw four more quest	<b>Instructions to paper setter for Final-Term Examination:</b> The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit. <b>Course Objectives:</b> The objective of this course is to cover fundamental soft computing concepts with											
an exposure to A										nm (GA	Ă).	
Course Outco		By the end o									• 1	
CO1		ecognize th uzzy set, ne									simple	genetic a
CO2	l S	inderstand a et and its o and cons.	and o	describ	e: the 1	role of	geneti	c algo	rithm c	perato		
CO3	ι	ise: genetic	-		•	•	ANN a	and th	eir cons	stituent	S	
CO4	( 2	lifferentiate activation fu Analyze: fu	s: so: s: so:	ft components of a	puting ANN.	and ha		mputi	ng, ope	erators	of gene	etic algoi
CO5	(	compare: so lifferent act	oft (	comput	ing ar	nd hard	com	puting	, oper	ators o	of gene	tic algor
	CO-P	EO Mappii	ng N	latrix f	for Co	urse M	CA/G	EN/4	/DSC4	(a)		
COs		PEO1		PEC	02	P	EO3		PEO ₄	4	PE	05
CO1		1		3		1			3		3	
CO2		2		3			1		3		3	3
CO3		3		3			1		3		3	3
CO4		3		3			1		3	ĺ	3	3
CO5		3		3			1		3		3	3
Average		2.4		3			1		3		3	3
	CO-P	O Mappin	g M	atrix fo	or Cou	ırse M	CA/GI	EN/4/	DSC4(	a)		
COs	POI	P02	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	P012
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3		3		 			<u> </u>

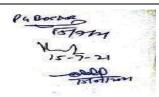
NL 9-7-21 Dep

CO4		2	1	1	3	1		3				
CO4		2	1	3	1	3		3			_	
Average		2	1.4	1.4	2.2	1.8		3				
Average	CO						urse N		- FN/4/	DSC4(a)	-	
COs			501		PSO2			SO3		PSO4	,	PSO5
CO1			3		1			3		1		_
CO2			3	1				3		2		_
CO3			3 1 3 -							-		
CO4			3		1			3		3		-
CO5			3		1			3		3		
Average			3		1			3		2.6		-
Course Content												
MCA/GEN/4/DSC4(a): Soft Computing         Unit – I       Introduction to Soft Computing: Overview of Soft Computing, difference between soft and hard computing, brief descriptions of different components of soft computing including artificial neural networks, fuzzy logic, genetic algorithms.												
Unit – II	repre Selec selec Cross cross repre	esenta ction: tion. sover sover esenta ation real-v	ation. Roule: Roule: and it: order: ation. and its	ette s type ed c	wheel es: Sin crossov s: Flip	seleo ngle p ver, u oping,	ction, point cr uniform Interch	randon ossove cross nanging	n, ran r, two sover, g, reve	k, tourr point cr crossov rsing, rej	name rossc er f place	ic algorithm, it ent, Boltzman over, multipoin for real-value ement, mutation id convergenc
Unit – III	<ul> <li>Fuzzy Logic: Introduction to fuzzy logic, representation of a classical set, representation of fuzzy set, basic properties of fuzzy sets.</li> <li>Fuzzy set operation: Intersection of fuzzy sets, union of fuzzy sets, complement of fuzzy sets, important terminologies in fuzzy set operations, properties of fuzzy sets, fuzzy arithmetic.</li> <li>Fuzzy Composition: Max-Min composition, max-star composition, max-product composition, max-average composition. fuzzification and de-fuzzification.</li> </ul>											
Unit - IV												
				Т	ext/Re	feren	ce Bool	KS				
Text Books	<ul> <li>Books</li> <li>1. David E. Goldberg, Genetic Algorithms in Search, Optimization and machine learning, Addison Wesley.</li> <li>2. ZbigniewMichalewicz, Genetic algorithms +Data Structures = Evolution Programs, SpringersVerlag.</li> </ul>											
Reference Books	1. M.	. Mit	chell, A	n Intr	oducti	on to	Genetic	Algor	ithms,	Prentice-	-Hall	
	Su	-							P4 Bos	-Dec		

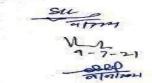


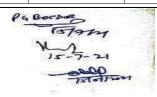



- 2. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI.
- 3. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley India.
  - 4. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.


		MCA/G	EN/	/4/DSC	<b>4(b):</b>	Machin	e Lea	rnin	g				
Course Type	Course	Contact		Deliver	-	Maxin	num N	Aark	s		xam		ssment
	Credit	Hours/ Week		Mode	; ]	External	Ir	ntern	al	Du	ration	Me	thods
Optional	04	04		Lectur	e	70		30		3 Hours		TEE/MTE/ Assignment	
Theory							20	20 5 5		5			nment/ ndance
Instructions to p	-						-		-	-			
questions in all.													
marks each cov comprising of ty													
four more quest	-										-		attempt
Course Outco		t the end of										Πι.	
CO1	de	efine: the	term	ns of r	nachii	ne learr	ning:	types	s of	ma	chine	learning	g, data
CO2		eprocessing plain: lear									ire of	ANN	
		^			-		-						1
CO3		ply: trainir											
		echniques and classification, regression, clustering techniques according to heir problem.											
CO4		Classify: data preprocessing, model selection, regression, classification, and											
	ur	nsupervised							-				
CO5		ompare: l arning.	Data	Prepr	ocessi	ing tech	nnique	es, S	uper	rvise	d and	unsup	ervised
	CO-PE	CO Mappir	ng N	latrix f	for Co	ourse M	CA/G	EN/	4/D	SC4(	<b>b</b> )		
COs		PEO1		PEC	)2	P	EO3		F	PEO4	ŀ	PE	05
CO1		1		3		1						3	
CO2		2		3		1						3	3
CO3		3		3			1			3			3
CO4		3		3			1			3		3	3
CO5		3		3			1			3		3	3
Average		2.4		3			1	1		3		3	
CO-PO Mapping Matrix for Course MCA/GEN/4/DSC4(b)													
COs	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8		P09	PO10	PO11	P012
CO1	1	3	1	1	1	-	3	-		-	-	-	-
CO2	2	1	1	3	1	-	3	-		-	-	-	-

W.L. 9-7-21 Deep


PaBo 1579M


<b>F</b> .												
CO3	3	1	1	3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
	CO-PS	O Mappi	ng M	atrix	for Co	urse M	ICA/G	EN/4/.	DSC4(	( <b>b</b> )	Ι	
COs		PSO1	PSO2			PSO3			PSO4		PSO5	
CO1		3		1			3		1		-	
CO2		3		1			3		2			-
CO3		3		1			3		3		-	-
CO4		3		1			3		3			-
CO5		3		1			3		3			-
Average		3		1			3		2.6		-	-
	<b>I</b>		1					<b>I</b>		Į		
Course Content MCA/GEN/4/DSC4(b): Machine Learning												
Unit – I Unit – II Unit – III Unit – IV	learning learning Prepari machin reductio Supervi learning multiva Unsupe unsuper	of Machi g, types o g, issues ir ng to Mo e learning on and fea ised Learn g steps, c riable regn rvised L rvised lear Network:	f mac del: g, ex ture s ing: I comm ressio	chine le hine le Introdu ploring ubset s ntrodu on cla n, logi ng: I (cluste	earning uction, g struc selection, assifica stic re introduction, F	g and g, mach cture c on), mo classif ation a gressio tetion X-mean	its con ine le of data odel se ication lgorith n). and s).	arning a, data lection. (introc im), re its aj	activit pre-p luction gressio	ties, ty rocess n, class on (lir ions,	ons of ypes of ing (di ification near reg	data in mension n model, gression,
						e Bool						
Text Books	Lir 2. Eth	m M. Mit nited. nemAlpayo nchine Lea	chell, din, I	, Mach	nine Lo	earning o Macł	, McC					
<ol> <li>Reference Books</li> <li>Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press.</li> <li>Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press.</li> <li>Peter Harrington, Machine Learning in Action, Manning</li> <li>ShaiShalevShwartz and Shai Ben David, Understanding Machine Learning From Theory to Algorithms, Cambridge University Press</li> </ol>												





## MCA/GEN/4/DSC4(c):Genetic Algorithms Course Type Course Delivery Maximum Marks Exam Assessment Contact Credit Hours/ Mode Duration Methods External Internal Week 04 04 70 Optional Lecture 30 3 Hours TEE/MTE/ Theory Assignment/ Attendance 5 5 20 Instructions to paper setter for Final-Term Examination: The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit. **Course Objectives:** To study fundamental concepts of evolutionary algorithm, genetic algorithm, their applications, genetic operators, the theoretical Analysis of Evolutionary Algorithms, Niche and Speciation **Course Outcomes** At the end of this course, the student will be able to: CO1 define concepts of: evolutionary algorithms, population, gene, alleles, phenotype, fitness function, crossover, selection and mutation. CO2 describe/explain: crossover, selection mutation, Diploid, dominance. abeyance, Niche and Speciation. understand: application of genetic algorithms for job shop scheduling problems. CO3 use: encoding scheme, crossover, selection, mutation operators and fitness scaling. CO4 differentiate: evolutionary algorithms and traditional algorithms, types of crossover, mutation, selection, inversion and reordering operator, crowding and restricted mating. select and defend: crossover, mutation and selection operators of genetic CO5 algorithms. **CO-PEO Mapping Matrix for Course MCA/GEN/4/DSC4(c)** PEO1 PEO2 PEO3 PEO4 PEO5 COs 3 3 3 CO1 1 1 CO2 2 3 1 3 3 CO3 3 3 3 1 3

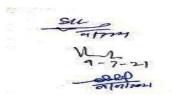


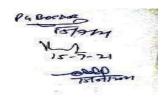


CO4		3		3		1	1		3		3	
CO5		3		3			1		3		3	
Average		2.4		3			1		3		3	3
	O-PO	Mappin	g Mat	rix f	or Cou	ırse M	CA/G	EN/4/D	SC4(d			
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012
CO1	1	3	1	1	1	-	3	-	-	-	-	-
CO2	2	2 1		3	1	-	3	-	-	-	-	-
CO3	3	3 1		3	3	-	3	-	-	-	-	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
CO	D-PSO	Mappir	ng Ma	trix	for Co	urse N	ICA/G	EN/4/I	DSC4(	(c)		
COs	PS	501	I	PSO2	2	P	SO3		PSO4	ŀ	PS	05
CO1		3		1			3		1		-	
CO2		3		1		3			2		-	-
CO3		3	1		3			3		-	-	
CO4		3	1				3		3		-	-
CO5		3	1				3		3		-	
Average		3	1				3		2.6		-	-
		MCA/G			rse Co 4(c): (		e Algoi	rithms				
alg alg	orithm orithm	on: Inti , advan - biolog l approad	tage gical ar	of end Al	volutio [, intro	onary duction	algorit n of ge	thm, a	pplicat	tion o	f evol	utionary
phe	enotype	nodelling e and f e and lim	itness	fun	ction.	simple	e gene					
Unit - IIIOperators of GA Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria												
	Unit - IV Theoretical Analysis of Evolutionary Algorithms: Diploid, dominance and abeyance, inversion and reordering operator, fitness scaling.											

Ste Total N.L. 9-7-21 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 -

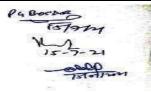



	Niche and Speciation: Fitness sharing, crowding and restricted mating. Application of GA: Genetic Algorithm for job shop scheduling problems (JSSP).							
Text/Reference Books								
Text Books	<ol> <li>S.N. Sivanandam, S.N. Deepa, Introduction to Genetic Algorithms, Springer.</li> <li>Mitchell, Melanie, An Introduction to Genetic Algorithms, United Kingdom, MIT Press, 1998.</li> </ol>							
Reference Books	<ol> <li>Goldberg, David Edward, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 2002.</li> <li>D. Nagesh Kumar, Multicriterion Analysis in Engineering and Management, PHI Learning, 2010.</li> <li>Lance Chambers, The Practical Handbook of Genetic Algorithms: Applications, 2e, United Kingdom, CRC-Press, 1995.</li> </ol>							


MCA/GEN/4/DSC5(a): Data Warehousing and Data Mining								
Course Type	Course	5		Maximu	ım Marks	Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives**: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.


-	
Course	At the end of this course, the student will be able to :
Outcomes	
CO1	define: the concepts of data mining, data pre-processing, outliers, data
	warehouse ,OLAP , association rule mining, data classification
	prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data
	warehousing to data mining, association rule, classification and
	prediction methods.
CO3	apply: OLAP technology and association rules.
	use: decision induction, Bayesian and back prorogation classification
	methods.
CO4	differentiate: operational database systems and data warehousing, single
	dimensional and multidimensional association rules, and between
	various data mining classification methods.

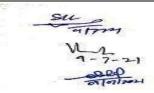


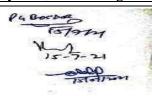


CO5			uate: ( multi-						ouse,	OLAI	P techn	ology,	single
	CO		O Map						GEN/4	4/DSC	5(a)		
Cos	ĺ	Р	EO1		PEC	02		PEOS	3	PI	EO4	P	EO5
CO1			1	ĺ	3			1			3		3
CO2			2	Ì	3			1			3		3
CO3			3		3			1			3		3
CO4			3		3			1			3		3
CO5			3		3			1			3		3
Average			2.4		3			1			3		3
	CC	)-PO	Mapp	ing M	[atrix :	for Co	urse I	MCA/0	GEN/4	/DSC5	5(a)		
Cos	Р	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	3	1	1	1	-	3	-	-	1	-	-
CO2		2						1	-	-			
CO3		3	1 1 3 3 - 3					-	1	-	-		
CO4		2	1	1	3	1	-	3	-	-	1	-	-
CO5		2	1	3	1	3	-	3	-	-	1	-	-
Average		2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-
	CO	)-PS(	) Map	ping N	Aatrix	for Co	ourse	MCA/	GEN/4	I/DSC	5(a)	I	
Cos		Р	SO1		PSO	2		PSO3		PS	504	P	SO5
CO1			3		1			3			1		-
CO2			3		1			3			2		-
CO3			3		1			3			3		-
CO4			3		1		-	3			3		-
CO5			3		1			3			3		-
Average			3		1			3		2	2.4		-
			MCA/	GEN/		irse Co 25(a): 1			ousing	and D	ata Mi	ning	
Unit I	da mi cle co	ta mi ning eanin ncep	lining: ning, k systen g, Data	Introduind of ind of n, Maj a Integ rchy g	uction: data, I or issu gration enerati	Motiv Functic les, Da and tr on. Da	ration, onalitie ta Min ansfor	Import es, inter ning Pr mation	cance, l resting rimitiv , Data	Knowle patterr es. Dat reduct	edge dis ns, class ta Pre-p tion, Di	scovery ification rocessing scretiza	process, n of data ng: Data tion and liers and
Unit - II											-		rehouse, ouse, A
	St	L							Paer	osba			

.....




	Multidimensional Data Model, Data warehouse Architecture, Data warehouse Implementation, data warehousing to data mining, Data warehouse usage.
Unit - III	Association Rule Mining: Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association Mining.
Unit - IV	Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods. Cluster Analysis: What is Cluster Analysis, Types of Data in Cluster Analysis, Applications and Trends in Data Mining.
	Text/Reference Books
Text Books.	<ol> <li>Ale Berson, Stephen Smith, KorthTheorling, Data Mining, Tata McGraw Hill.</li> <li>Pieter Adriaans and DolfZantinge, Data Mining, Addison-Wesley Longman.</li> <li>Sam Anahory, Data Warehousing in the Real World, Addison-Wesley Longman.</li> </ol>
<b>Reference Books</b>	1. Chanchal Singh, Data Mining and Warehousing, Wiley.


	Ι	MCA/GEN/4	/DSC5(b): ]	Big Data .	Analytics		
Course	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment
Туре	Credits	Hours/ Week	Mode	Externa 1	Internal	Duration	Methods
Optional Theory	04	04	Lecture	70	30       20     5       5	3 Hours	TEE/MTE/ Assignment/ Attendance

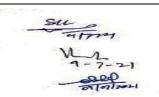
**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

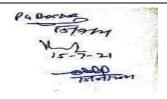
**Course Objectives:** The objective of this course is to get the students familiar with different concepts of Big Data and their realization/implementation using Hadoop and Map Reduce tool sets.

<b>Course Outcomes</b>	At the end of this course, the student will be able to :
CO1	define: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data
	with Unix tools and Hadoop, Hadoop Streaming, Hadoop Echo System,
	IBM Big Data Strategy, HDFS, Hadoop Ecosystem, Pig, Hive shell and
	services, HBasics, Big SQL.
CO2	understand and describe: Big Data and Hadoop, Analysing Data with
	Hadoop,
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,





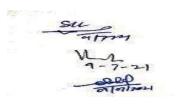

CO3		apply	and	use:	Apac	he Ha	doop,	p Ecosys HDFC,	HBasic	c, Bi	g Dat	ta and
			<b>1</b>			l line i	interfa	ce, Hado	op file	e syst	em inte	erfaces
CO4			ow, H			Hadaa	n Dia	Data A		a <b>A</b> a	asha T	Indone
004					Hive s			g Data A	marytic	s, Ap	ache r	lauoop
CO5					et of Pi			DFS.				
CO-PEC	Manni	na Ma	trix fo	r Cou	se MC	A/CEN	/4/DSC	'5(h)				
Cos	PE(	-	PEO		PEO3	PEC		PEO5	_			
C01	1		3	-	1	3		3				
CO2	2		3		1	3		3				
CO3	3		3		1	3		3				
CO4	3		3		1	3		3				
CO5	3		3		1	3		3				
Average	2.		3		1	3		3				
СО-РО				1		1	1			1	[	
Cos	PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
CO1	1	3	1	1	1	-	3	-	-	1	-	-
CO2	2	1	1	3	1	-	3	-	-	1	-	-
CO3	3	1	1	3	3	-	3	-	-	1	-	-
CO4 CO5	2	1	1	3	1	-	3	-	-	1	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	1	-	-
	(	CO-PS	O Map	ping N	Matrix	for Cou	rse MO	CA/GEN/	4/DSC5	5(b)		
Cos	Р	SO1	P	SO2	Р	SO3		PSO4		]	PSO5	
CO1		3		1		3		1			-	
CO2		3		1		3		2			-	
CO3		3		1		3		3			-	
CO4		3		1		3		3			-	
CO5		3		1		3		3			-	
Average		3		1		3		2.4			-	
						e Conte						
•	1 .*						. 0	Data Ana	•		D' 5	
			-		-		-	ital data, i bache Had			-	
	-	-		•	-			ng, Hadoo	-		-	
					·· · · · · ·	-r 5		3,	1		,	<u> </u>
	Su	P						P4 Bord	*0	A	1	
	<u>su</u> V	Tra	7					P4 Bors	Tan		No. of Concession, Name	
	V	1						15	-5-21	j ĝ	14	

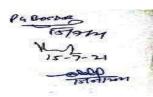

Stra	ategy,Big Data applications.									
line	HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.									
	ap Reduce:Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, k execution, Map Reduce types and formats, Map Reduce features.									
Pig lati Hiv Hiv	idoop Ecosystem: g: Introduction to Pig, execution modes of Pig, comparison of Pig with databases, grunt, Pig in, user defined functions, data processing operators. ve: Hive shell, Hive services, Hive metastore, comparison with traditional databases veQL, tables, querying data and user defined functions. base: HBasics, concepts, clients, example, Hbaseversus RDBMS. Big SQL: Introduction									
	Text/Reference Books									
ext Books 1. 2. 3. Pre	Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics", Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC ess.									
eference ooks1. 2.3. 4.	University Press, 2012.									

	MCA/GEN/4/DSC5(c): Data Science												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04	Lecture	70	30       20     5       5	3 Hours	TEE/MTE/ Assignment/ Attendance						

**Instructions to paper setter for Final-Term Examination:** The question paper will consist of nine questions in all. First question will be compulsory and will consist of five short questions of 2 marks each covering the whole syllabus. In addition, eight more questions will be set unit-wise comprising of two questions from each of the four units. The candidates are required to attempt four more questions of 15 marks each selecting at least one question from each unit.

**Course Objectives**: The objective of this course is to get the students familiar with the concepts and processes of Data Science including collection, filtering, processing, analysis and visualization.




Course Outcomes	A	t the	end of t	his cou	se, the	student	will b	e able	to :					
	d	efine:	data sc	ience pr	ocess, o	classific	ation	of data	a, big data	a, web	data, sar	npling,		
CO1	d	ata an	alysis t	echniqu	es-corre	elation,	regres	sion, 1	mean, mo	de, kui	tosis, Ba	ayesian		
						, fuzzy	logic,	rule	of mining	, hadoo	op, hive,	cloud		
				visualiz		1 1			<b>f</b> - <b>1</b> - ( -	-4	1			
CO2									n of data, distributio					
									ion rule, n					
			-	-					ework and			2		
CO3		use: data science process, modern data analytic tools, statistical concepts, data												
		analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining												
		techniques, hadoop file system, hive, S3, cloud database, inference and visualization.												
CO4		categorize: analytic processes and tools, analysis, reporting, sampling and re-												
		sampling, data analysis techniques, linear and non-linear time series, sequential,												
		temporal and spatial mining, egonets systems and application.												
CO5		choose: data science process, data storage, data analytic tools and processes,												
sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.														
data analysis framework and technique suitable in given situation.         CO-PEO Mapping Matrix for Course MCA/GEN/4/DSC5(c)														
Cos	PE			PEO2			EO3		PEO4		DI	EO5		
CO1		1		3		1	1		3	r				
CO2		2	1	3		1			3		3 3			
CO3	1	3		3			1		3			3		
CO4		3		3			1		3			3		
CO5	1	3		3			1		3			3		
Average	2	.4		3			1		3			3		
	CO-F	PO Ma	apping	Matrix	for Co	urse M	CA/G	EN/4	/DSC5(c)	)				
Cos	PO1	PO2		PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12		
CO1 CO2	1 2	3	1	1 3	1	-	3	-	-	1	-	-		
CO3	3	1	1	3	3	-	3	-	-	1	-	-		
CO4	2	1	1	3		-	3	-		1		_		
CO5	2	1	3	1	3	-	3	-	-	1	-	-		
Average	2	1.4	1.4	2.2	1.8	-	3	_	-	1	-	_		
	CO-P	SO M	anning	ng Matrix for Course MCA/GEN/4/DSC5(c)										
Cos		SO1		PSO			SO3	"	PSO4		ps	505		
CO1		3	<u> </u>	1		1	3		1 1	·		-		
CO2		3		1			3		2		-			
CO3		3		1			3		3			-		
CO4		3	Ì	1			3		3			-		
CO5		3		1			3	[	3			-		

Ste atom N.L. 9-7-21 Deep atomas

Average		3	1	3	2.4	-					
			Course Co	ntent							
		MO	Course Co CA/GEN/4/DSC5(								
Unit I Introduction to Data Science : data science process, exploratory data analysis, collection of data, graphical presentation of data, classification of data, storage and retrieval of data, big data, challenges of conventional systems, web data, evolution of analytic scalability, analytic processes and tools, analysis vs reporting, modern data analytic tools; Statistical Concepts: sampling distributions, re-sampling, statistical inference, prediction error.											
Unit – II	varia regr netv	ables, analysis ession modelin vorks, support v	using mean, me	dian, mode, stand nalysis, Bayesian nethods;	dard deviation, modeling, infe	probability, random skewness, kurtosis, rence and Bayesian					
Unit – III	com Fuzz metl Asso	petitive learnin zy Logic: extra hods, neuro fuz pociation Rule N	g, principal compo acting fuzzy mode zy modelling,	nent analysis and ls from data, fuz	neural networks zy decision tree	and generalization, ; es, stochastic search ern mining, temporal					
Unit – IV	NoS visu	QLdatabases, al data analysi	cloud databases, S	S3, Hadoop Distri raction techniques	ibuted File Sys	op, Hive, sharding, tems, visualizations, k analysis,collective					
			Text/Referen	ce Books							
Text Books.	2.		•	-		ger, 2007. atasets", Cambridge					
Reference Books		Streams with A	aming the Big Data dvanced Analytics chelineKamber "D	", John Wiley & S	ons, 2012.	-					

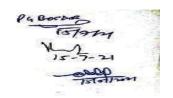




- 3. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013.
- 4. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013.
- 5. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014.

## MCA/Gen /4/SEC2: Project Work

Course Type	Course	Contact	Delivery	Maxim	Maximum Marks		Maximum Marks		Assessment Methods
	Credit	Hours/Week	Mode	External	Internal	Duration			
Core Compulsory Project Work	08	16	Project Work	150	50	-	Teacher Interaction/ Project Report/ Viva Voce		

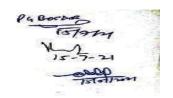

**Instructions to paper setter for Final-Term Examination:** The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of project report and a presentation based viva voce exam.

**Course Objectives:** To expose students to the realm of software development by working on some real-life problem. Students get to apply the principles of software development in practice and apply one of the several software development paradigms.

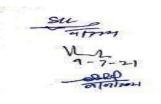
<b>Course Outcomes</b>	At the end of this course, the student would have learnt to : enumerate various software development paradigms and steps/phases therein												
CO1			1 1 I										
		e general concepts in											
CO2		inderstand and describe various software development paradigms and											
		teps/phases therein as well as the general concepts in software development											
		life cycle.											
CO3		use/apply the principals and practices of software engineering in real-life											
004		elopment project w		, <b>1</b> •	. 1 1								
CO4		classify software development environments, paradigms, tools and											
CO5		technologies based on various parameters.											
005		choose (and justify) between the competing technologies and software											
	development paradigms that suit to particular type of software development project.												
CO6	design and develop software systems for simple real-life problems												
000	U U	individually and complex systems as a member of team.											
	CO-PEO Map	ping Matrix for Cou	urse MCA/Gen /	4/SEC2									
Cos	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	3	3	3	3								
CO2	2	3	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3 3 3 3											
CO6	3	3	3	3	3								

Average		2.5		3			3			3		3
	CO	-PO Ma	pping	Matrix	tor Co	ourse N	ACA/O	Gen /4/	/SEC2			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	3	3	3	3	1	3	-	3	3
CO2	2	3	1	3	3	3	3	2	3	-	3	3
CO3	3	3	1	3	3	3	3	3	3	-	3	3
CO4	3	3	1	3	3	3	3	3	3	-	3	3
CO5	3	3	3	3	3	3	3	3	3	-	3	3
CO6	3	3	3	3	3	3	3	3	3	-	3	3
Average	2.5	3	1.6	3	3	3	3	2.5	3	-	3	3
	CO-	PSO M	apping	, Matri	x for C	ourse	MCA/	Gen /4	/SEC2	2		
Cos	PS	SO1		PSO2			PSO3		PS	504	P	SO5
CO1		3		3			3		1			3
CO2		3		3			3			2		3
CO3		3		3			3			3		3
CO4	3			3			3		3			3
CO5	3			3			3		3			3
CO6		3		3			3		3		3	
Average		3		3			3			2.5		3

Ste atras 1-7-21 200 atalian

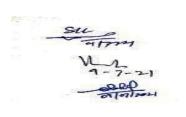



MCA/GEN/4/CC21: Software Lab based on MCA/GEN/4/CC19(Python Programming)												
Course Type	Course	Contac	5	Maxim	um Marks	Exam	Assessment					
	Credit	Hours/W	eek Mode	External	Internal	Duration	Methods					
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File					
<b>Instructions to</b> conducted by a p practical file, per	anel of in	nternal and	external examin	ers. Exam	inees will b							
<b>Course Objectives:</b> The objective of this course is to get the students hands on practice with scripting/programming concepts of Python language as covered in course MCA/GEN/4/CC19.												
Course	At	the end of	f this course, the	e student v	will be able	to:						
Outcomes												
CO1			llations, workin	-			-					
			oriented program									
CO2		-	ditional & cont oraries and pack			-	file handling					
CO3		-	python libraries				ndas					
005			n programming			L 1						
CO4			atatypes,diction									
	ns,	python lit	oraries.									
CO5		mpare:										
		tatypes,dio raries.	ctionaries,condi	tional&co	ntrolstatem	ents,functi	ons,python					
CO6			and advanced a	pplication	ns in pythor	1.						
			oing Matrix for (									
COs	1	PEO1	PEO2	PE	1	PEO4	PEO5					
CO1		1	3	3	5	3	3					
CO2		2	3		3	3	3					
CO3		3	3	3	3	3	3					
CO4		3	3	3	3	3	3					
CO5		3	3		3	3	3					
CO6		3	3	3	3	3	3					


Ste Totom N.L. 9-7-21 Del Totom

Average		2.5		3			3			3		3
	<b>CO-</b>	PO Ma	pping	Matri	x for C	Course	MCA	/GEN/	4/CC2	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	-	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3	1	3	1	-	3	3	-	-	-	-
CO5	3	1	1	3	3	-	3	3	-	-	-	-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-
	CO-F	SO Ma	apping	Matri	ix for (	Course	e MCA	GEN.	/4/CC2	21		1
COs	PS	501		PSO	2		PSO3		PS	504	PS	505
CO1		3		1			1			1		-
CO2		3		2			2			2	-	
CO3		3		3			3			3		-
CO4		3		3			3			3		-
CO5		3		3			3			3		-
CO6		3		3			3		3			-
Average		3		2.5			2.5 2.5				-	

NL 9-7-21 Dep




MCA/GI	EN/4/C	C22: Sof	tware	Lab ba	ased o	n MCA	A/GE	CN/4/CC	20(R P	rogran	nming)																	
Course Type	Course			Deli	•	Max	kimur	n Marks		xam		ssment																
	Credit	Hours/	Week	Mo	de	Extern	nal	Interna	1 Du	ration	Met	hods																
Practical	02	04	1	Practi Lab W		50		-		-		Practical																
<b>Instructions to p</b> conducted by a pa practical file, perfo	anel of	internal a	and ext	ernal e	examin	ners. Ex																						
Course Objective scripting/programmer																												
Course Outco	mes	At the er	nd of t	his cou	urse, t	he stuc	lent	will be	able to	:																		
CO1		list : data	a types	s, func	tions	in R p	rogra	amming	g, visua	lizatio	n.																	
CO2							naki	ng state	ments,	loops,	user de	efined																
		describe: the syntax of decision making statements, loops, user defined functions, used define packages; explain: the process of import and export of data in text file, excel file and MYSQL .																										
CO3		use: various in built ,user defined function and packages . apply: R programming constructs to solve real world problems.																										
CO4											l																	
CO5		compare	: datat	ypes, o	condit	tional of		ntrol sta	atemen	ts,func	tions,																	
packages in R programming.CO6design:basic and advanced applications in R programming.																												
		·PEO Ma																										
COs		PEO1		PEC	02		PEC	03	PI	EO4	PI	EO5																
CO1		1		3			3		3		3 3																	
CO2		2		3			3			3		3																
CO3		3		3			3		3		3		3		3		3		3		3		3		3			3
CO4		3		3			3		3		3		3		3		3		3		3			3				
CO5		3		3			3		3		3			3														
CO6		3		3			3		3		3			3														
Average		2.5		3			3			3		3																
	CC	-PO Ma	pping	Matrix	x for (	Course	MC	A/GEN/	4/CC2	2																		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO8	PO9	PO10	PO11	PO12																
CO1	1	3	1	1	1	-	3	1	-	-	-	-																
CO2	2	1	1	3	1	-	3	2	-	-	-	-																
CO3	3	1	1	3	3	-	3	3	_	-	_	-																
CO4	3	3	1	3	1	-	3	3	-	-	-	-																
	3	1	1	3	3	-	3	3	-	-	-	-																
CO5		-	1	-	2		-																					
CO5 CO6	3	3	3	3	3	-	3	3	-	-	-	-																



Re Borne Istory N.A. Istory Jator

	CO-PSO Mapping Matrix for Course MCA/GEN/4/CC22											
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	1	1	-							
CO2	3	2	2	2	-							
CO3	3	3	3	3	-							
CO4	3	3	3	3	-							
CO5	3	3	3	3	-							
CO6	3	3	3	3	-							
Average	3	2.5	2.5	2.5	-							



