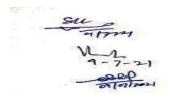
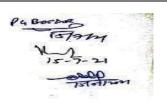
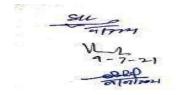
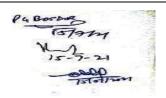

	MTech/CSE/PT/1/CC1: Advanced Database Systems											
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance					


Course Objectives: The objective of this course is to get the students familiar with different concepts related to database.

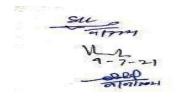

Course Outcomes	At the	At the end of this course, the student will be able to:										
CO1			a archite									
			es, views					echniqu	ies, dat	abase so	ecurity	issues,
G0.2			nodels, a					-				
CO2			agram, 1									
		forms, SQL constraints and views, recovery techniques, data warehouse, and distributed databases.										
CO3			nce, SQI	ctatem	ents no	rmal for	me S()I cor	etraint	dener	dencie	. data
CO3			rrency co							s, uepei	idencie	s, uata
CO4			ibclass,			•	_			normal	forms	SOL
			endenci									
CO5											_	
	functio	sustify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints, functional dependencies, security, concurrency control and recovery techniques.										
CO 6	design:	design: database for a particular application.										
CO-PEO Mapping Matrix for Course MTech/CSE/PT/1/CC1												
COs	PEO	l	PE	CO2		PEO3		PE	EO4		PEO5	
CO1	1			1		3			3		3	
CO2	2		,	2		3			3			
CO3	3		-	3		3			3		3	
CO4	3		(3		3			3		3	
CO5	3		(3		3			3		3	
CO 6	3		3	3		3	j		3	Ì	3	
Average	2.5		2	.5		3	İ		3	Ì	3	
	CO-	PO Map	ping Ma	atrix for	Course	MTech	/CSE/I	PT/1/C	CC1	•		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3

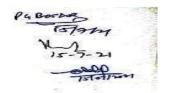
ī.												
CO2	2	1	1	3	1	1	-	-	-	-	2	3
CO3	3	1	1	3	3	1	-	-	-	-	3	3
CO4	3	3	1	3	1	1	-	-	-	-	- 3	
CO5	3	1	1	1	3	1	-	-	-	-	- 3	
CO 6	3	3	3	3	3	1	-	-	-	-	- 3	
Average	2.5	2	1.33	2.33	2.33 2 1 2.5						3	
CO-PSO Mapping Matrix for Course: MTech/CSE/PT/1/CC1												
COs	COs PSO1 PSO2 PSO3 PSO4 PSO5											
CO1		3		2	ĺ	1			-	ĺ	3	
CO2		3		2		2			-		3	
CO3		3		2		3			_		3	
CO4		3		2		3			-		3	
CO5		3		2		3			-		3	
CO 6		3		2		3			-		3	
Average	rerage 3 2 2.5 - 3											
Course Content MTech/CSE/PT/1/CC1: Advanced Database Systems												
Unit - I	Independent Constrair Inheritar specialization	dence, Ints and nce, Spation and	ER Diag Relatio pecializa ad Gener	rams, Nonal Datation an	aming abase d Ger i. Relat	hitecture conventi Schemas, eralizational Mo ase Scher	ons an EER on, Co del: Re	d Desi model onstrai	ign Iss : Subc nts ar	ues. Re lasses, id cha	lational Super racterist	Model classes, tics of
Unit - II	forms b	oased or osition,	Prima: Multiva	ry keys: ilued dej	1NF, penden	ional scl 2NF, 31 cies and ing Basic	NF and	d BCN JOIN (NF, Prodepende	operties encies	of Re and 5N	lational F. SQL
Unit - III	Unit - III Introduction to Transaction processing: Concepts, Concurrency control techniques, Database recovery techniques: Deferred update and Immediate update, ARIES Recovery algorithm, Shadow paging, Database security issues											
Unit - IV Data Warehousing: Components, Building a data warehouse, Data extraction, cleanup and transformation, OLAP Future Trends in data models: Semantic data models, Active and Spatial databases, Temporal databases, Multimedia databases, Distributed Database concepts and Client Server Architecture												
Text/Reference Books												
Text Books						Database m Conce	•				•	



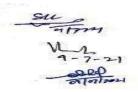

Reference Books	1. C.J. Date: An Introduction to Database System, 7e, Addison Western New Delhi.
	2. Abbey Abramson & Cory: ORACLE SI-A Beginner's Guide Tata McGraw Hill
	Publishing Company Ltd.
	3. Hector G.M., Ullman J.D., Widom J., "Database Systems: The Complete Book",
	Pearson Education.

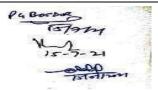
	MTech/CSE/PT/1/CC2: Advanced Data Structures											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
					20 5 5		Attendance					


Course Objectives: The objective is to make students to learn different algorithms analysis techniques, analyse the efficiency of algorithm, apply data structures and algorithms in real time applications.

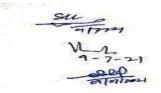

Course Outcomes	At the end of this cou	At the end of this course, the student will be able to:							
CO1	identify: data type, time and space complexity, stack, queue, linked list, trees, graph,								
	<u> </u>	searching, sorting and hashing.							
CO2	understand and expl	understand and explain: abstract data types, stack, queue, linked list, tree, and graph,							
	searching, sorting, an	d traversing algorith	ıms and hashing	g function.					
CO 3	apply and use: various	us data types, algori	thms, stack, qu	eue and link list ope	erations, tree				
	traversal operation, g	raph representation	and traversals a	algorithms, and sear	ching sorting				
	techniques on data.	traversal operation, graph representation and traversals algorithms, and searching sorting techniques on data.							
CO 4	distinguish: time and	distinguish: time and space complexity, stack and queue, single, double and circular							
	linked list, binary, AV		•	•					
	Dijkstra's and Kruska								
CO5	select: algorithm, dat			<u> </u>					
	in a given situation.		1,	8	1				
CO 6	design: algorithm, sta	ock anene linked lis	st trees graph	searching sorting an	nd hashing				
	acsign. argorithm, ste	en, queue, mineu m	t, trees, graph,		ia nasimig.				
	CO-PEO Mappi	ng Matrix for Cou	rse MTech/CSI	E/PT/1/CC2					
COs	PEO1	PEO2	PEO3	PEO4	PEO5				

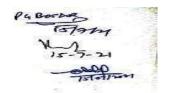
															_
CO1		1			1			3			3			3	
CO2		2			2			3			3			3	
CO3		3			3			3			3			3	
CO4	3		3		3		3			3					
CO5	3			3			3			3			3		
CO 6	3				3			3			3			3	
Average		2.5		7	2.5			3			3			3	
	C	CO-PO Mapping Matrix for Course MTech/CSE/PT/1/CC2													
COs	PO1	PO2	PO3	PO4	PO5	PO6)	PO7	P08		P09	PO10	PO11	P012	
CO1	1	3	1	1	1		-	_	-	-	-	-	1	3	
CO2	2	1	1	3	1		-	-	-	-	-	-	2	3	
CO3	3	1	1	3	3		-	-	-		-	-	3	3	
CO4	3	3	1	3	1	İ	-	-	-	-	-	-	3	3	
CO5	3	1	1	1	3		-	-	-	-	-	-	3	3	
CO 6	3	3	3	3	3		-	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.33	2		-	-	-	-	-	-	2.5	3	
	CO)-PSO	Mappi	ng Matri	ix for C	Cour	se N	/Tech/0	CSE	/PT /	/1/CC2	2			
COs		PSO1		PSO2			P	SO3			PS	O4		PSO5	
CO1		3		3				1			-	-		3	
CO2		3		3				2			-	-		3	
CO3		3		3				3			-	-		3	
CO4		3		3				3			-	-		3	
CO5		3		3				3			_	-		3	
CO 6		3		3				3			-	-		3	
Average		3		3				2.5			-	-		3	
		MTech	ı/CSE/F	Cour T/1/CC2	rse Cor 2: Adva			ata Stri	uctu	res					
p	Unit - I Introduction to algorithms: abstract data types, role of algorithms in computing, performance analyzing algorithms, designing algorithms, time-Space trade-offs growth of functions, asymptotic notations, Recurrences: master, substitution, recurrence tree method.														
				s on stac n linked		eue	⁢	s variat	ions,	, op	eration	ıs, type	es of l	inked list	

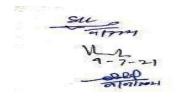


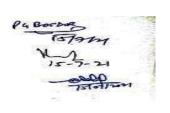

	Trees: representation, traversals, operations, applications, binary search trees, AVL trees, Splay trees, B-trees, m-way search tree, implementation of threading on binary trees.							
Unit - III	Graphs : representation, traversals(BFS, DFS, Topological sort), operations, applications, shortest path algorithms (Dijkstra's), minimum spanning trees, algorithms for finding minimum spanning tree (Kruskal, Prim's), Graph coloring.							
Unit - IV	Sorting and Searching: linear search, binary search, insertion sort, Shell sort, Heap sort, Merge sort, Quick sort, Bubble sort, Bin sort, Radix sort. Hashing: hash Function, collision resolution, deletion, perfect hash functions, hash functions for Extendible files.							
	Text/Reference Books							
Text Books	 Seymour lipschutz, Data structures with C, MacGraw Hill. Adam Drozdek, Data Structures and Algorithm in C++, India Edition. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley. 							
Reference Books	 Alfred V. Aho, John E.Hopcroft, Jeffrey D.Ullman, Data Structures and Algorithms, Pearson Education. Ellis Horowitz,SartajSahni,SanguthevarRajasekaran, Fundamental of Computer Algorithms, 2e,Universities Press. YedidyahLangsam, Moshe J.Augenstein, A. M.Tenebaum, Data Structures using C and C++, 2e, Pearson Education 							

	MTech/CSE/PT/1/DSC1(i): Network Security												
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	04	04 Lecture		70	30	3 Hours	TEE/MTE/ Assignment/						
Theory					20 5 5		Attendance						

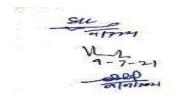

Course Objectives: To study fundamental concepts of Network Security, security attacks, cryptography, authentication, web security, system and email security.

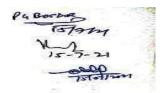

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: computer security, security standards, cipher model, encryption techniques, data encryption standards, public-key cryptography, security at transport layer, SSL/TSL attacks, wireless security and IEEE 802.11i.



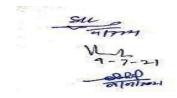

CO2							with the						
		advanced encryption standard, RSA, concept of digital signature, security protocols, wireless security measures and email security. Illustrate: features related with computer security, encryption techniques, data											
CO3					•					tech	nigue	e data	
COS		cryption standards, security at transport layer and wireless LAN security.											
CO4							ts archite					ecurity	
		echanism, encryption standards, protocols at transport layer and wireless LAN											
CO5	secu			tuanda		maaha	miama ai	mh an m	adal DC	A Di-	ee: a 11	allman	
CO3		aluate: security trends, security mechanisms, cipher model, RSA, Diffie-Hellman y exchange, transport layer security, SSL/TSL attacks, wireless security and IP											
		security.											
C	CO-PEO	Mappir	ng Ma	ıtrix foı	Course	MTec	ch/CSE/I	PT/1/D	SC1(i)				
Cos	P	PEO1		PEC)2		PEO3		PEO4		P	EO5	
CO1		1		1			3		3			3	
CO2		2		2			3		3			3	
CO3		3 3 3 3									3		
CO4		3 3 3							3				
CO5		3 3 3 3							3				
Average		2.4 2.4 3 3 3											
CO-PO Mapping Matrix for Course MTech/CSE/PT/1/DSC1(i)													
Cos		2	3	4	10	2		~		0	1	2	
	P01	PO2	PO3	P04	PO5	P06	PO7	P08	P09	PO10	PO11	P012	
	<u> </u>										_		
				1			1						
CO1	1	3	1	1	1	2	-	-	-	-	1	3	
CO1 CO2			1	1 3	1	2	-	-	-	-	1 2	3	
	1	3				2 2	-	-		-			
CO2	1 2	3	1	3	1	2		-			2	3	
CO2 CO3	1 2 3	3 1 1	1 1	3 3	1 3	2 2	- - - -	- - -			2 3	3 3	
CO2 CO3 CO4	1 2 3 3	3 1 1 3	1 1 1	3 3	1 3 1	2 2 2	- - - -	-			2 3 3	3 3 3	
CO2 CO3 CO4 CO5 Average	1	3 1 1 3 1 1.8	1 1 1 1 1	3 3 3 2.6	1 3 1 3 1.8	2 2 2 2 2		- - - - - - -	- - - - - SC1(i)	-	2 3 3	3 3 3	
CO2 CO3 CO4 CO5 Average	1 2 3 3 3 2.4	3 1 1 3 1 1.8	1 1 1 1 1 ng Ma	3 3 3 2.6	1 3 1 3 1.8	2 2 2 2 2					2 3 3 2.4	3 3 3	
CO2 CO3 CO4 CO5 Average	1 2 3 3 3 2.4	3 1 1 3 1 1.8 Mappin	1 1 1 1 1 ng Ma	3 3 3 2.6	1 3 1 3 1.8 • Course	2 2 2 2 2				- - - - -	2 3 3 2.4	3 3 3 3	
CO2 CO3 CO4 CO5 Average Cos	1 2 3 3 3 2.4	3 1 1 3 1 1.8 Mappir	1 1 1 1 1 ng Ma	3 3 3 2.6	1 3 1 3 1.8 • Course	2 2 2 2 2	PSO:				2 3 3 2.4	3 3 3 3 3 SO5	
CO2 CO3 CO4 CO5 Average Cos CO1	1 2 3 3 3 2.4	3 1 1 3 1 1.8 Mappir	1 1 1 1 1 ng Ma	3 3 3 2.6	1 3 1.8 • Course PSO2 3	2 2 2 2 2	PSO:				2 3 3 2.4	3 3 3 3 3 SO5	
CO2 CO3 CO4 CO5 Average Cos CO1 CO2	1 2 3 3 3 2.4	3 1 1 3 1 1.8 Mappin PSO 3 3	1 1 1 1 1 ng Ma	3 3 3 2.6	1 3 1.8 • Course PSO2 3	2 2 2 2 2	PSO:				2 3 3 2.4	3 3 3 3 3 805 3	

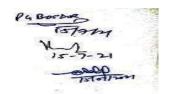
Average	3	3	2.4	-	3				
		Course Content T/1/DSC1(i) Netw	vork Security						
Unit – I Computer Security Concepts – Introduction, security, security trends, components of information system, OSI security architecture, security attacks, goals for security, security mechanisms, security standards. Cipher model, cryptanalysis and brute-force attack, classical encryption techniques – symmetric techniques – substitution techniques, transposition techniques, rotor machines, steganography.									
	Unit – II Traditional block cipher; data encryption standard – encryption and decryption, advanced encryption standard – structure and expansion functions. Public-key cryptography – principles, applications and requirements; RSA, Diffie-Hellman key exchange. Concept of digital signature.								
	Security at Transport TLS record protocol, heart-beat protocol; SSL/TSL attacks; HT protocol.	, change cipher spe	c protocol, alert p	protocol, handsh	ake protocol,				
	Wireless Security, w strategy. Wireless LAN securi Email security, S/MI	ity, IEEE 802.11i -	services, operation	·	- threats and				
	Tex	xt/Reference Book	KS						
	Pearson Education	gs, Cryptography A on nopadhyay, Cryptog							
	2. Godbole, Inform	ptography and Net nation Systems Sec les and Practice, W	curity, Wiley Inc		, Information				

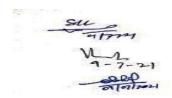


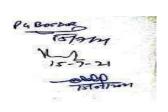

	MTech/CSE/PT/1/DSC1(ii):Advanced Computer Networks												
Course	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment Methods						
Type	Credit	Hours/ Week	Mode	External	Internal	Duration							
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

Course Objectives: The objective of this course is to get the students familiar with various networking models, different IP addressing, wireless LANS and latest network technologies.

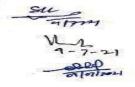

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: computer networking including network models, media for transmission,IEEE standards, logical addressing, routing protocols, domain name system, world wide web, HTTP, FTP and wireless LANs.
CO2	explain: various concepts of computer networking including network models, media for transmission along with the standards followed, logical addressing, routing protocols, domain name system and wireless LANS.
CO3	apply: techniques learnt here in the design and evaluation of computer networks and decide which network models, routing protocols, logical addressing, transmission media or wireless LAN will suit a particular situation.
CO4	categorize: computer networks, network models, routing protocols, logical addressing, transmission media and wireless LANs.
CO5	choose: IEEE standards, unicast and multicast routing protocols, logical addressing, transmission media and wireless LANs.


CO	D-PEO Mapping	Matrix for Cour	se MTech/CSE/P	T/1/DSC1(ii)	
Cos	PEO1	PEO2	PEO3	PEO4	PEO5
CO1	1	1	3	3	3
CO2	2	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Average	2.4	2.4	3	3	3
C	O-PO Mapping N	Matrix for Cours	e MTech/CSE/PT	Γ/1/DSC1(ii)	'

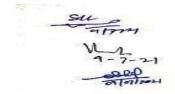


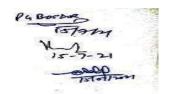

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	-	-	1	-	_	1	3			
CO2	2	1	1	3	1	-	-	-	-	_	2	3			
CO3	3	1	1	3	3	-	-	-	-	_	3	3			
CO4	3	3	1	3	1	-	-	1	-	-	3	3			
CO5	3	1	1	3	3	-	-	-	-	-	3	3			
Average	2.4	1.8	1	2.6	1.8	-	-	1	-	-	2.4	3			
CC)-PSO	Mappi	ing Ma	atrix fo	r Cours	е МТ	ech/CS	E/PT /1	DSC1	ii)					
Cos		PSO1		PS	SO2		PSO3		PSO ₂	4	PSO	O5			
CO1		3			3		1		-		3				
CO2		3			3		2		-		3				
CO3		3			3		3		-		3				
CO4		3			3		3		-		3				
CO5		3			3		3		-		3				
Average		3			3		2.4		-		3				
Course Content MTech/CSE/PT/1/DSC1(ii): Advanced Computer Networks															
	Transm Connec Etherne	ission ting L. t: IEE	Media ANs: (E Stan	: Guided Connecti	d Media ing Dev tandard	, Unguices, B	uided Nackbornet, Fa	Media. ne Netv st Ether	e model vorks. rnet, Gig		ernet.				
1	Unicast	Routi	ng Pro	tocols a	nd Mult	ticast F	Routing		cols						
		s Netv ks. IP	vork aı		,		AN, P	AN, Se	nsor Net	works a	nd Adhe	oc			
	Domain Space, l	Name DNS i	Systent the In	nd HTTI em: Nam nternet, c, DDoS	ne Space Resolut	e, Dom		ame Spa	ace, Dist	ribution	of Nam	ne			
	_		ı	Text/Re	eference	e Book	S								
	4e, 2. Jean	Morga n Walr	n Kau and ar	fmann, 2	2007. nVaraiy			_				pproach, orks, 2e,			

	3.	Markus Hoffmann and Leland R. Beaumont, Content Networking: Architecture, Protocols, and Practice, Morgan Kauffman, 2005.
Reference Books	1.	Behrouz A. Forouzan, Data Communications and Networking, 4e, Tata McGraw Hill, 2006.

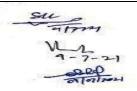


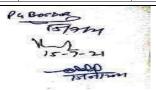
	MTech/CSE/PT/1/DSC1(iii): Wireless Networks												
Course	Course	Contact	Delivery	Maximum Marks			Exam	Assessment					
Type	Type Credit Hours/ Week		Mode	External	Inter	nal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30)	3 Hours	TEE/MTE/ Assignment/					
				20 5	5		Attendance						


Course Objectives: To study fundamental concepts in wireless network, various LAN standards, IP and IPV6 Layer, Transmission protocols and WAN standards.


Course Outcomes	At the end of	this course, the stu	dent will be able	to:		At the e						
CO1		ess LAN, architec wide area network.		work layer, mobile	transport layer	wireless						
CO2	mobile ad-ho	oc network, TCP en	hancements for v	es , IEEE 802.16, E vireless network, U es and challenges o	TMS, 3G-MSC,	mobile l						
CO3	architecture,	mobile IP, mobi	le ad-hoc netwo	nysical layer, Mac lork, mobile transpopA, features and cl	ort layer, TCP	Transmi						
CO4	enhancement	analyze: WLAN technologies, 802.11b, 802.11a, IEEE 802.16, IPV6, Routing, TCP enhancements, TCP improvements, UMTS core network architecture, firewall, 3G,4G and 5G networks.										
CO5	transport lay	compare: different Wireless LAN technologies, mobile network layer, mobile transport layer, Mobile IP, mobile ad-hoc networks, protocols, TCP improvements and wireless WAN types.										
	CO-PEO Mapp	ing Matrix for Co	urse MTech/CSI	E/PT/1/DSC1(iii)								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3 3 3 3										
Average	2.4	2.4 2.4 3 3 3										
	CO-PO Mappi	ng Matrix for Cou	rse MTech/CSE	/PT/1/DSC1(iii)	1							
												

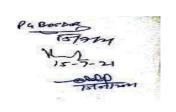
Cos												2			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	1	3	1	1	1	-	-	-	-	-	1	3			
CO2	2	1	1	3	1	j -	-	-	-	-	2	3			
CO3	3	1	1	3	3	-	-	-	-	-	- 3 3				
CO4	3	3	1	3	1	-	-	-	-	-	3	3			
CO5	3	1	1	3	3	-	-	-	-	-	3	3			
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3			
CO-PSO Mapping Matrix for Course MTech/CSE/PT/1/DSC1(iii)															
COs	PS	SO1	F	PSO2		PSO3		PSC)4		PS	SO5			
CO1		3		3		1		-		3					
CO2		3		3		2		-	- 3						
CO3		3		3		-				3					
CO4		3		3		3		-			3				
CO5		3		3		3	-				3				
Average		3		3		2.4		-			3				
	N	/ITech/	CSE/P	Course T/1/DSC	e Conter C1(iii): V		Netwo	rks							
Unit – I	spectrui layer, 8 Archite	m -IEE 802.11b cture,	E802.1 o, 802. Radio	1: System 11a – H Layer,	n archite Iiper LA Basebar	cture, pi N: WA nd layei	otocol TM, I	nfrared, U architect BRAN, H k manag m allocati	ure, phy liperLA er Pro	vsical 1 .N2 – tocol,	layer, Blue secu	MAC etooth:			
Unit - II	tunnelir initiatio	ng and on prote	encaps	sulation,	IPV6- Nad-hoc n	letwork	layer i	packet do in the into ig, Destin	ernet- 1	Mobile	P IP s	ession			
Unit - III	Conges TCP in	tion co	ntrol, inents:	fast retra Indirect	nsmit/fas TCP, Si	st recovenoping	ery, In TCP,	eless prot aplication Mobile T TCP over	s of mα ΓCP, T	obility ime o	- Cl ut fre	assical ezing,			
Unit - IV	UMTS GMSC/ (HSDP	Core SMS-I A)- LT	netw WMSC E netv	ork Ar C, Firew work arc	chitectur all, DNA hitecture	e: 3G- S/DHCP and pr	MSC, -High otocol	Terrestria 3G-SGS speed I , features ures and o	SN, 30 Downlir and c	G-GGS ik pac hallen	SN, cket	SMS-access			


Text/Reference Books												
Text Books	 Jochen Schiller, "Mobile Communications", 2e, Pearson Education 2012. Vijay Garg, "Wireless Communications and Networking", 1e, Elsevier, 2007. 											
Reference Books	 William Stallings, Wireless Communications and Networks, Pearson/Prentice Hall of India. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadband", 2e, Academic Press, 2008. Anurag Kumar, D. Manjunath, Joy Kuri, "Wireless Networking", 1e, Elsevier 2011. Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", 1e, Pearson Education, 2013. 											

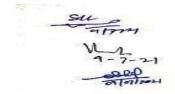

MTech/CSE/	MTech/CSE/PT/1/CC3:Software Lab based on MTech/CSE/PT/1/CC1 (implementation in PL/SQL)												
Course Type	Course Contact		Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Practical	02	04	Lab Work	50	1	3 Hours	TEE/ Practical File						

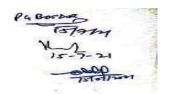
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with advanced concepts of database (as covered in course MTech/CSE/PT/1/CC1) and their implementation in PL/SQL.

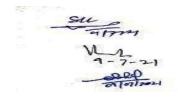

Cauras Outsams	A A Alba and a C A	1.1	aut will be able to.								
Course Outcome		•	ent will be able to:	110 111							
CO1			R diagrams, EER mo								
			concurrency contro	l techniques, databa	ase security issues,						
	semantic data	models, and client	server architecture.								
CO2	discuss: ER d	liagram, relational	model, EER mod	del, functional depe	endencies, normal						
	forms, SQL c	orms, SQL constraints and views, recovery techniques, data warehouse, and distributed									
	databases.	databases.									
CO3	apply: inheri	ply: inheritance, SQL queries, normal forms, SQL constraints, dependencies, data									
	* * *	ecurity, concurrency control and recovery techniques on database.									
CO4	•	ifferentiate: subclass, super class, inheritance, SQL queries, normal forms, SQL									
		onstraints, functional dependencies, data security, concurrency control and recovery									
		echniques.									
CO5		justify: subclass, super class, inheritance, SQL queries, normal forms, SQL constraints,									
	•	functional dependencies, data security, concurrency control and recovery techniques.									
CO 6	-	se for a particular a) commiques:						
		•	• •	EF/DT/1/CC2							
	CO-PEO M	apping Matrix for	Course MTech/CS	DE/F1/1/CC3							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
			_	 							
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						

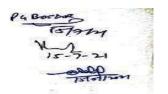
CO5	3		,	3		3			3		3	
CO 6	3		,	3		3		3			3	
Average	2.5	2.5		2.5		3			3		3	
	CO-l	PO Map	ping Ma	atrix for	Cours	e MTech	/CSE/I	PT/1/C	C3	"		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3
CO2	2	1	1	3	1	1	-	-	-	<u> </u>	2	3
CO3	3	1	1	3	3	1	-	-	-	-	3	3
CO4	3	3	1	3	1	1	-	-	-	_	3	3
CO5	3	1	1	1	3	1	-	-	-	-	3	3
CO 6	3	3	3	3	3	1	-	-	-	-	3	3
Average	2.5	2	1.33	2.33	2	1	-	-	-	_	2.5	3
	СО-Р	SO Maj	pping M	atrix for	Cours	e: MTec	h/CSE	/PT/1/	CC3			
COs	PS	SO1		PSO2		PSO3	3	P	SO4		PSO	5
CO1		3		2		1		-			3	
CO2		3		2		2			-		3	
CO3		3		2		3					3	
CO4		3	2			3			-		3	
CO5		3		2		3		-		İ	3	
CO 6		3		2	ĺ	3		-		İ	3	
Average		3		2	ĺ	2.5			-	ĺ	3	

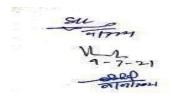


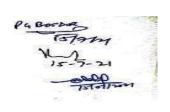


	MTech/CSE/PT/2/CC4: Advanced Web Technology												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week Mode		External	Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance						

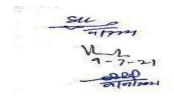

Course Objectives: The objective of this course is to get the students familiar with different concepts related with HTML, Java Scripts, Search Engines and CMS.

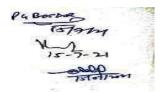

Course Outcome		At the end of this course, the student will be able to:											
CO1		define: the basic concepts of HTML, CSS, XHTML, HTML5, XML, JavaScript, PHP, MySQL, search engine and content management systems.											
CO2		_	ITML5 capabilities										
		with PHP & MySQL, search engine techniques and optimize search results.											
CO3	^	erform: HTML tags with XML, JavaScript with PHP and MySQL queries, optimize earch engine result using SEO techniques, Webhosting and different type of CMS											
	_	e result using SEC	techniques, Web	hosting and differ	ent type of CMS								
	technologies.												
CO4			with XML, building	U 1									
		_	optimization techn	•	ferent CMS like								
			ith help of their fea										
CO5	_		elationship of HTM	L, SGML and XM	L.								
		ent side or server si	•										
	•	ies on table and for	• •										
			higher ranking in se										
CO6		•	CSS,XML and Java										
	• -	1 0	bpages to achieve h	0	arch engine.								
			ntent Management	-									
	CO-PEO M	apping Matrix for	Course MTech/CS	SE/PT/2/CC4									
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3	3	3	3								
CO6	3	3	3	3	3								
Average	2.5	2.5	3	3	3								



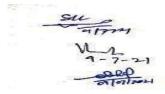

	CO-	PO Ma _l	ping M	atrix for	Cour	se MTech	/CSE/	PT/2/C	CC4				
COs	PO1	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1 1		-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3	
	CO-I	SO Ma	pping M	 latrix fo	r Cou	rse MTec	h/CSE/	PT/2/0	CC4	I	ı	I.	
COs	PS	CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC4 PSO1 PSO2 PSO3 PSO4 PSO5											
CO1		3		3		1			-		3		
CO2		3		3		2			-		3		
CO3		3		3		3			-		3		
CO4		3		3		3		-		3			
CO5		3		3		3		-		3			
CO6		3		3		3			-		3		
Average		3		3		2.5		-		3			
]	MTech/	CSE/PT	Cours /2/CC4:		tent aced Web	Techn	ology					
Unit - I		KML rela	ationship	between	_	TML, cap IL, SGML					-		
Unit – II		SQL Fu				vaScript, ries in tab							
Unit – III		ation (SI		_	-	sed by sea vriting pla	•	_	•		_		
Unit – IV	CMS: In CMS Te Hosting	chnolog	ies: Wor	dPress, I	Drupal	, Joomla, '	Websit	e Creat	ion and	l mainte	nance,	Web	
			T	ext/Ref	erence	Books							
Text/Reference Books 1. Peter Smith, "Professional Website Performance", Wiley India Pvt. Ltd. 2. Kogent Learning, "Web Technologies: HTML, JavaScript, PHP, Java, JSP, XML, AJAX - Black Book", Wiley India Pvt. Ltd.' 3. J. C. Jackson, "Web Technologies", Pearson Education,													

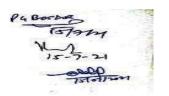
Reference Books	1. Steven Holzner, PHP: The Complete Reference, Tata McGraw Hill
	2. DT Editorial Services, "HTML 5 Black Book", 2e, Wiley India, 2016.
	3. S. Potts, "JAVA 2 Unleashed", 6e, Sams Publishing, 2002

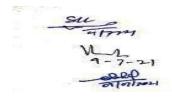

	MTech/CSE/PT/2/CC5:Advanced Computer Architecture												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	rs/Week Mode		Internal	Duration	Methods						
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment(s)/ Attendance						

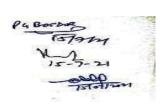

Course Objectives: The objective of this course is to get the students familiar with different concepts related to computer architecture.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: concepts of parallel processing, computer architecture, principles of pipeline,
	collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, distributed and shared MIMD.
CO2	understand and explain: parallel processing, computer architecture, principles of
	pipeline, collision free scheduling, ILP processors, branch handling, TLB, paging,
	segmentation, memory hierarchy technology, switching and routing techniques,
	distributed and shared MIMD.
CO3	illustrate different types of: computational models, pipeline, scheduling, TLB, paging,
	segmentation, cache performance, network interconnection topologies, cache
	coherence problem and switching network.
CO4	categorize: level of parallelism, linear and non-linear pipeline, code scheduling, TLB,
	paging and segmentation, UMA, NUMA, CC-NUMA and COMA multiprocessors.
CO5	relate: concurrent and parallel execution, dependencies between instruction,
	synchronous and asynchronous pipeline, different code scheduling and hardware
	based cache coherence protocols.

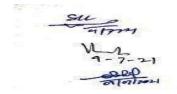

CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/CC5												
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	1	3	3	3							
CO3	3	1	3	3	3							
CO4	3	1	3	3	3							
CO5	3	1	3	3	3							
Average	2.4	1	3	3	3							

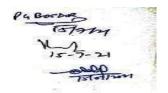

CO-PO Mapping Matrix for Course MTech/CSE/PT/2/CC5



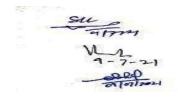

	1	1	1	1	1	1		1	1	1	1	1 1	
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	P012	
CO1	1	3	1 1 1				-			1	3		
CO2	2	1	1	1 3 1		-	-	-			2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	_	_	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC5													
COs	P	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1		3		1			1		-		3		
CO2		3		1			2		-		3		
CO3		3		1			3		-		3		
CO4		3		1			3		-		3		
CO5		3		1			3		-		3		
Average		3		1			2.4		-		3		
	МТа	och/CSI	r/ D Tr/			Content iced Co	mnutar	A rehit	actura				
Unit - I	Concu of pa archit Instru Pipeli Linea linear	urrent a rallel pectures. ction-L ning. F	nd Par proces evel-F ipelin ine-clo	rallel Exsing, Translel arallel cocking	xecution ypes and Process ruction & time	on: Von- and level sors: De proces	Neuman els of p ependen sing, Sy atrol, sp	nn compoarallel	outation ism, Cl tween in nous & efficien	assifica nstructi Async ncy &	ons, Pri hronous through	c concepts of parallel inciples of s pipeline, nput, Non g, internal	
Unit - II Unit - III	Introduction to ILP processors – Evolution of ILP, Dependencies between instructions, Principles of pipelining, Performance measures, VLIW architecture, Branch handling-delayed branching, branch processing, multiway branching, guarded execution, Code scheduling- basic block scheduling, loop scheduling, global scheduling. Memory Hierarchy Technology: inclusion, coherence and locality, virtual memory												
	models, TLB, paging and segmentation, memory replacement policies, cache addressing models, cache performance issues, interleaved memory organization. Distributed MIMD architectures: Direct interconnection networks-interconnection topologies, switching techniques, routing												
Unit - IV												switching vare based	

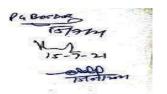
cache coherence protocol- Snoopy cache protocol, Directory scheme, and hierarchic cache coherence protocol. UMA, NUMA, CC-NUMA and COMA multiprocessors.											
Text/Reference Books											
Text Books	 Hennessy J.D., Patterson D.A., "Computer Architecture A Quantitative Approach", Elsevier India. Sima D., Fountain T., Kasuk P., "Advanced Computer Architecture-A Design Space Approach," Pearson Education. 										
Reference Books	Kai Hwang, "Advanced Computer Architecture – Parallelism, Scalability, Programmability", Tata McGraw Hill.										

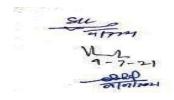


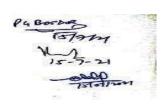


	MTech/CSE/PT/2/DSC2(i): Soft Computing												
Course Type	Course	Contact Hours/	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Week	Mode	External	Internal	Duration	Methods						
Optional Theory			Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
					20 5 5		Attendance						

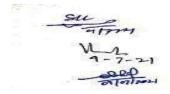

Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

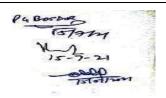

Course Outcomes	By the end of this course, the student will be able to:													
CO1	recognize the concepts of: soft computing and hard computing, simple genetic algorithm, fuzzy set, neuron, neural network and activation function.													
CO2	understand and describe: the role of genetic algorithm operators, representation of fuzzy set and its operation, types of neural network and activation function including their pros and cons.													
CO3		use: algorithm i.e. genetic algorithm, fuzzy logic, ANN and their constituents for solving optimization problem.												
CO4	activat	differentiate: soft computing and hard computing, operators of genetic algorithm and activation functions of ANN. analyze: fuzzification and defuzzification.												
CO5		compare: soft computing and hard computing, operators of genetic algorithm and different activation functions of ANN.												
C	CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(i)													
COs		PEO1		PEO2			PEO3]	PEO4		PE	O5
CO1		1		1			3				3		3	3
CO2		2		2			3				3		3	3
CO3		3			3			3		3			3	3
CO4		3			3			3			3		3	3
CO5		3		Ì	3			3			3		3	3
Average		2.4			2.4			3			3		3	3
C	о-РО	Mappi	ng M	atrix	x for C	ourse N	Tech	CSE/	PT/2/I	SC2(i)		·		
COs	PO1	PO2	PO3		PO4	PO5	PO6 PO7 PO8			P09	PO10	PO11		PO12



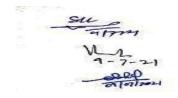

CO1		1	3	1	1	1	-	-	-	-	-	1	3
CO2		2	1	1	1 3 1		-	-	-	-	-	2	3
CO3		3	1	1	3	3	-	-	_	-	-	3	3
CO4		3	3	1	3	1	-	-	-	-	-	3	3
CO5		3	1	1	3	3	-	-	-	-	-	3	3
Average		2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(i)													
COs PSO1 PSO2 PSO3 PSO4 PSO5													
CO1		3	3		3			1			-	3	3
CO2		3 3 2 -											
CO3		3 3 - 3											
CO4		3 3 - 3											
CO5		3 3 - 3											3
Average	3 3 2.4 - 3											3	
Unit - II Unit - III	har arti	roduction of computation in the computation of consover a dered crost tation are used representation are used representation of computation o	n to So ting, bural ne gorithm on. Rouletto and its ty esentat c: Intro assic properatio ant term	ft Comporief destworks, a: Introde wheel types: Suniforrypes: Frion, crooduction operties an: Intersminolog	selection to selection recossor in the fuzzy of fuzzy section of the fuz	Overviews of difference genetic or genetic o	or of Societic all cerent calculations and an area of the cerent calculations and area of the cerent calculations and area of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are of the cerent calculations are o	oft Comport comport gorithm, so the k, tour two portion for read reverse attended and constant comport for the k, tour two portions are and constant constan	nputing nents of ms. simple namen int croul-value ing, relations of a converse fuzzy roperticompose	genetic t, boltzr ssover, red repre placeme classical r sets, co es of fuz	algorithmann selemultipoisentation ent, mutacriteria. set, repromplementzy sets,	m, its ection. nt crosso n. etion for resentati nt of fuz	over, real- on of
Unit - IV Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network, perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. Activation function and types of activation function. perceptron network, XOR problem.													
				16	xt/Refe	rence B	OOKS						

Text Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley. ZbigniewMichalewicz, Genetic Algorithms +Data Structures = Evolution Programs, SpringerVerlag.
Reference Books	 M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall. S. Rajasekaran& G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI. S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India. Simon O. Haykin, Neural Networks, A Comprehensive Foundation, PHI.

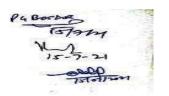




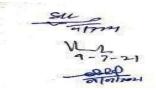
	MTech/CSE/PT/2/DSC2(ii): Machine Learning												
Course	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment Methods						
Type	Credit	Hours/ Week	Mode	External	Internal	Duration							
Optional Theory	04	04	Lecture 70 30 3 Ho		ecture 70 30		TEE/MTE/ Assignment/						
					20 5 5		Attendance						

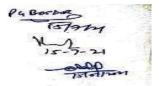

Course Objectives: The objective of this course is to enable student to perform experiments in Machine Learning using real-world data.

using fear-world data.												
Course Outcomes	At th	e end o	f this c	ourse, t	he stud	ent will	be able	to:				
CO1	l l			f machi	ine lear	ning: d	lata-pre	process	ing, cl	assifica	tion, reg	ression
		neurons										
CO2	_		types of	f: data,	data pr	e proce	essing re	egression	n, class	sification	n ,unsup	ervised
		learning.										
CO3		discuss: architecture of ANN. apply: training and testing data using data pre processing and model selection										
003											ording t	
		olem.	and on	assiiica		25103310	n, crus	tering t	cerniq	aes aee	ording t	o then
CO4			niques	of: dat	a pre p	rocessir	ng, mod	el selec	tion, re	gressio	n, classif	fication
		classify techniques of: data pre processing, model selection, regression, classification and unsupervised learning techniques.										
CO5 compare techniques of: data pre processing, supervised and unsupervised learning.												
CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(ii)												
COs	P	EO1		PEO2	2	F	PEO3		PEO4		PEC	D 5
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average		2.4		2.4			3		3		3	
C	О-РО	Mappi	ng Mat	rix for	Course	е МТес	ch/CSE	/PT/2/D	SC2(ii)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3

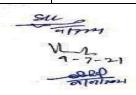


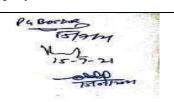
CO3		3	1	1	3	3	-	-	_	-	-	3	3	
CO4		3	3	1	3	1	-	-	-	-	-	3	3	
CO5		3	1	1	3	3	-	-	-	-	-	3	3	
Average		2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3	
	C	O-PSO	Mapp	ing Ma	trix fo	r Cour	se MTe	ch/CSF	E/PT/2/I	SC2(i	i)	1 1		
COs		PS	O1]	PSO2		PS	SO3		PSO4		PSC)5	
CO1		3			3			1		-		3		
CO2		3	3		3			2		-		3		
CO3		3	3		3	j		3		-		3		
CO4		3	3		3			3		-		3		
CO5		3	3		3			3		-		3		
Average		3	3		3		2	4		- 3				
Course Content MTech/CSE/PT/2/DSC2(ii): Machine Learning														
Unit – I	Type	es of M		Learnii								ine Learr earning, I		
Unit – II	Lear	ning, E		g struc	ture of	data, D						a in Mac tion and		
Unit – III	steps	s, Com		ssificat	tion alg	orithm)						model, l ltivariabl		
Unit – IV	Lear	rning (C	Clusteri	ng, K-N	Means).				ns, Tech	-		upervised	I	
	I.			7	Γext/Re	eferenc	e Book	s						
Text Books	2.	Ethem/		n, Intro	duction		-					vate Limition and		
Reference Book														

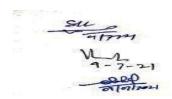

to Algorithms, Cambridge University Press



	MTech/CSE/PT/2/DSC2(iii):Artificial Intelligence												
Course	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment						
Туре	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods						
Optional Theory	•		Lecture	70	30	3 Hours	TEE/MTE/ Assignment/						
Incory					20 5 5		Attendance						

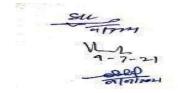

Course Objectives: Aim of this course is to familiarize the students with various techniques of artificial intelligence like predicate calculus, production rules; expert systems.

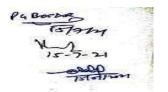

Course Outcomes	At th	At the end of this course, the student will be able to:										
CO1								ch strate				
											rminolog	
CO2											, knowle	
		representation and explore the theories that demonstrate intelligent behavior including										
		intelligent editor, learning by induction and dealing with uncertainty.										
CO3		use: search strategy, genetic algorithm, fuzzy logic and learning technique.										
CO4											of genet	
											certainty.	
CO5											g, operat	or of
genetic algorithm, knowledge representation and approaches that deals with												
uncertainty. CO-PEO Mapping Matrix for Course MTech/CSE/PT/2/DSC2(iii)												
CO)-PEO	Mapp	ing Ma	trix fo	r Cours	se MT	ech/CSI	E/PT/2/D	OSC2(ii	ii)		
Cos	PF	PEO1 PEO2 PEO3 PEO4 PEO5)5				
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3 3		3			
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average	2	2.4		2.4			3		3		3	
C	O-PO	Mappi	ng Mat	rix foi	r Cours	е МТе	ch/CSE	/PT/2/D	SC2(iii	i)		
COs												
	=	2	33	4	3	9	12	∞	6	10	11	12
	P01	PO2	P03	PO4	PO5	PO6	PO7	P08	P09	PO10	PO11	PO12
		+	1	1	+	1					+	1



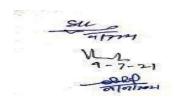
CO2	2	1	1	3	1	_	_	_	_	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO)-PSO	Mapp	ing Ma	trix fo	r Cours	se MTe	ech/CSE	E/PT/2/D	SC2(ii	i)		
COs	PSC	D1	P	SO2		PS	SO3		PSO4		PSO	05
CO1	CO1 3 3 1 - 3											
CO2	3	;		3			2		-		3	
CO3	3	;		3			3		-		3	
CO4	3	;		3			3		-		3	
CO5	3			3			3		-		3	
Average	3			3		2	2.4		-		3	
Course Content MTech/CSE/PT/2/DSC2(iii):Artificial Intelligence												
Unit – I Introduction: Background and history, Overview of AI applications areas. The predicate calculus: Syntax and semantic for propositional logic and FOPL, Clausal form, inference rules, resolution and unification. Knowledge representation: Network representation-Associative network & conceptual graphs, Structured representation-Frames & Scripts.												
Unit – II	Search iterati mini-i	h algo ve deo max	orithms- epening etc.),	unin and compu	formed inforr tational	search ned se comp	(depth arch (H plexity,	first, i ill climb Proper	breadth oing, be	first, d est first	al driven depth first, A* algori	st with gorithm,
Admissibility, Monotonicity, Optimality, Dominance. Unit – III Production system: Types of production system-commutative and non-commutative production systems, Decomposable and non-decomposable production systems, Control of search in production systems. Rule based expert systems: Architecture, development, managing uncertainty in expert systems - Bayesian probability theory, Stanford certainty factor algebra, Nonmonotonic logic and reasoning with beliefs, Fuzzy logic, Dempster/Shaffer and other approaches to uncertainty												
Unit – IV	Unit – IV Knowledge acquisition: Types of learning, learning by automata, intelligent editors, learning by induction. Genetic algorithms: Problem representation, Encoding Schemes, Operators: Selection, Crossover, Mutation, Replacement etc.											
Text/Reference Books												
Text Books											e, The	

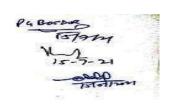
	3.	Dan W. Patterson, Introduction to Artificial Intelligence and Expert system, PHI. Wills J. Nilsson, Principles of Artificial Intelligence, Narosa Publishing House. Jackson Peter, Introduction to Expert Sytems, 3e, Addison Wesley -2000.
Reference Books		Ben Coppin, Artificial Intelligence Illuminated, Narosa Publishing House. Eugene Charniak, Drew McDermott, Introduction to Artificial Intelligence, Pearson Education.



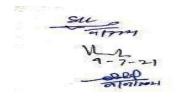

MTech/CSE/I	MTech/CSE/PT/2/CC6: Software Lab based on MTech/CSE/PT/2/CC4 (Advanced Web Technology)											
Course Type	Course			Maxim	um Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/					
							Practical File					

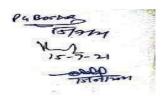
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of HTML, Java Scripts, Search Engines and CMS.

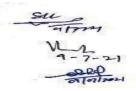

Course Outcomes	At the	end of the	his course	e, the stu	dent wil	l be able	e to:					
CO-1			sic conce h engine						L5, XN	/IL, Java	aScript, PHP	
CO-2			IL comm lySQL, se	_		_					Script concep	
CO-3	search techno	perform: HTML tags with XML, JavaScript with PHP and MySQL queries, optimize search engine result using SEO techniques, Webhosting and different type of CMS technologies.										
CO-4	rankin	illustrate: relationship of HTML with XML, building query on tables and forms, improve ranking using search engine optimization techniques, analyze different CMS like Wordpress, Joomla and Drupal with help of their features.										
CO-5	determ	compare: HTML with HTML5, relationship of HTML, SGML and XML. determine: client side or server side JavaScript. evaluate: queries on table and forms using MySQL. choose: effective plan to achieve higher ranking in search results.										
CO-6	MySQ	design: webpages using HTML, CSS, XML and JavaScript, generate various query using MySQL in webpages, modify webpages to achieve higher ranking in search engine. create: blog or websites using Content Management System.										
	CO-P	EO Ma	pping M	atrix for	Course	e MTecl	n/CSI	E/PT/2/	CC6			
Cos	PEO	l	PE	O2]	PEO3		PE	EO4		PEO5	
CO1	1		1	L		3			3		3	
CO2	2		2	2		3			3		3	
CO3	3		3	3		3			3		3	
CO4	3		3	3		3	Ì		3		3	
CO5	3		3	3		3	İ		3		3	
CO6	3		3 3 3 3							3		
Average	2.5		2.	.5		3			3		3	
	CO-	PO Map	pping Ma	atrix for	Course	MTech	/CSE	/PT/2/C	CC6	·		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 PO12	

1	3	1	1	1	-	-	-	-	-	1	3				
2	1	1	3	1	-	-	j -	-	-	2	3				
3	1	1	3	3	-	-	-	-	-	3	3				
3	3	1	3	1	-	_	-	-	-	3	3				
3	1	1	3	3	-	-	-	-	-	3	3				
3	3	3	3	3	-	-	-	-	-	3	3				
2.5	2	1.33	2.66	2	-	-	-	-	-	2.5	3				
CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC6															
PS	SO1		PSO2		PSO3		F	PSO1 PSO2 PSO3 PSO4 PSO5							
	3		_												
	3		3		1			-		3					
	3		3		1 2			-		3					
	3		3		2			-		3					
	3		3		2 3			-		3					
	3 3 3		3 3 3		3 3			-		3 3 3					
	2 3 3 3 2.5 CO-P	2 1 3 1 3 3 3 1 3 3 2.5 2 CO-PSO Ma	2 1 1 3 1 3 3 1 3 3 3 3 3 3 2.5 2 1.33 CO-PSO Mapping M	2 1 1 3 3 1 1 3 3 3 1 3 3 1 1 3 3 3 3 3 2.5 2 1.33 2.66 CO-PSO Mapping Matrix for	2 1 1 3 1 3 1 1 3 3 3 3 1 3 1 3 1 1 3 3 3 3 3 3 3 2.5 2 1.33 2.66 2 CO-PSO Mapping Matrix for Course	2 1 1 3 1 - 3 1 1 3 3 - 3 3 1 3 1 - 3 1 1 3 3 - 3 3 3 3 - 2.5 2 1.33 2.66 2 - CO-PSO Mapping Matrix for Course MTech	2 1 1 3 1 - - 3 1 1 3 3 - - 3 3 1 3 1 - - 3 1 1 3 3 - - 3 3 3 3 - - 2.5 2 1.33 2.66 2 - - CO-PSO Mapping Matrix for Course MTech/CSE/	2 1 1 3 1 - - - 3 1 1 3 3 - - - 3 3 1 3 1 - - - 3 1 1 3 3 - - - 3 3 3 3 - - - 2.5 2 1.33 2.66 2 - - - CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/0	2 1 1 3 1 -	2 1 1 3 1 -	2 1 1 3 1 - - - - 2 3 1 1 3 3 - - - - 3 3 1 1 3 3 - - - - 3 3 1 1 3 3 - - - - 3 3 3 3 3 3 - - - - 3 2.5 2 1.33 2.66 2 - - - - - 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/2/CC6				

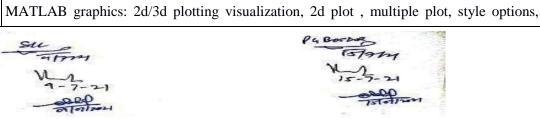


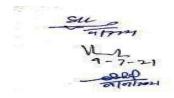


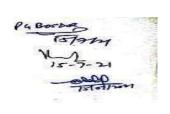
	MTech/CSE/PT/3/CC7: MATLAB Programming											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/					
Theory					20 5 5		Attendance					


Course Objectives: The objective of this course is to study, learn, and understand the major concepts of MATLAB Programming, namely, data types, data structure, matrices, data import/export, graphics, control structure, toolboxes, image and video processing.

structure, tooloones, ii		b									
Course Outcomes	At the end of t	At the end of this course, the student will be able to:									
CO1	define: features, commands, data types, hierarchy of operations, matrix, tools, functions related to input/output, file handling and graphics, control structure and toolboxes used										
		ıt/output, file handling	and graphics, con	trol structure and	d toolboxes used						
CO2	in MATLAB.										
CO2	describe: history, origin, features, commands, data types, hierarchy of operations, matrix, tools, functions related to file, function related to graphics, control structure and										
	various toolboxes of MATLAB.										
CO3		ls, operations, tools, m	enus, toolbars, inp	ut/output functio	ns, file handling,						
		ated to graphics, 2D			ture, debugging,						
		image & video process	~								
CO4	•	analyze: commands, data types, operations, control structure, matrix, tools, different									
CO5		functions related to graphics and file handling in given MATLAB program.									
003	determine: command, data type, tool, menu, control structure, debugging technique, function, feature or toolbox of MATLAB to use in given condition.										
CO6	create: basic or advanced program in MATLAB using different commands, 2D and 3D										
	plotting, functions, tools, features, simulink, fuzzy logic, neural network and image &										
	video processing toolbox of MATLAB.										
	CO-PEO Ma	pping Matrix for Co	urse MTech/CSE/	PT/3/CC7							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
CO6	3	3	3	3	3						
Average	2.5	2.5	3	3	3						

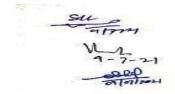


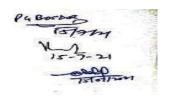

CO-PO Mapping Matrix for Course MTech/CSE/PT/3/CC7													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	_	_	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	2.67	2	-	-	-	-	-	2.5	3	
	CO-F	PSO Ma	pping l	Matrix f	or Cou	rse MT	Tech/C	SE/PT/	/3/CC7				
COs	F	PSO1		PSO2	2	P	SO3		PSO4	ļ.	PSC)5	
CO1		3		3			1		-		3		
CO2		3		3			2		-		3		
CO3		3		3			3		-		3		
CO4		3		3		3			-		3		
CO5		3		3			3			-			
CO6		3		3		3			-		3		
Average		3		3			2.5				3		
	Course Content MTech/CSE/PT/3/CC7: MATLAB Programming												
Unit I	Unit I MATLAB: Introduction, history, origin, growth and development, features, menus and the toolbar, computing, types of file, editor debugger, useful commands, help system, creating directory and saving files, constants variables and expressions-character set, data type, constants, variables and expressions, operators, hierarchy of operations, built-in-function, and assignment statements. Vectors and matrices: scalars and vectors, entering data in matrices, line continuation, matrices subscripts, multi-dimensional matrices and arrays, matrix manipulation, special matrices, commands related to matrices, structure arrays, cell arrays.												
Unit - II	Polynomials: entering, evaluation, roots, operations. Input/output statements: data input, interactive inputs, reading/storing data files, output commands, low level input output functions. Introduction to data import and export, supported file format, working with audio/video file, importing audio/video data, reading audio/video data from a file, exporting audio/video data, example, working with spreadsheets, writing to an xls file, reading from an xls files, working with graphics file, importing graphics data, exporting graphics data, creating a simple GUI programmatically, dissertations of different components in guide, creating menus.												
) (A TEX												



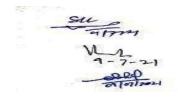
Unit - III

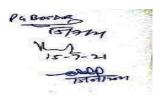
	legends, subplots, specialized 2d plot- logarithmic, polar, area, bar, barh, hist, rose, pie, stairs, stem, compass. 3d plot - plot3, bar3, bar3h, pie3, stem 3, meshgrid, mesh, surf, contour, contour3. Control Structures: for, nested for, while, branch control structure- if, switch, break, continue, error, try-catch, debugging.
Unit - IV	Introduction to MATLAB toolboxes: Simulink, image & video processing toolbox, application level image processing techniques, mri image processing, fuzzy logic toolbox, neural network toolbox.
	Text/Reference Books
Text Books.	 Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar, MATLAB and its Application in Engineering, Pearson Education. Ram N.Patel, Ankush Mittal, Programming in MATLAB, A Problem Solving Approach, Pearson Education. Duane Hanselman, Bruce L Littlefield, Mastering MATLAB 7, Prentice Hall. Amos Gilat, MATLAB: An Introduction with Application, Wiley Publisher.
Reference Books	 Jim Sizemore, John P.Mueller, MATLAB for Dummies, Wiley. Stephen J.Chapman, Matlab Programming for Engineers, Thomson-Engineering Publisher, CENGAGE Learning.



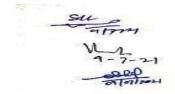


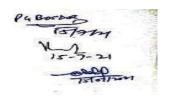
MTech/CSE/PT/3/CC8: Advanced Operating System										
Course Type	Course	Contact	m Marks	Exam	Assessment					
	Credit Hours/Week Mode		Mode	External	Internal	Duration	Methods			
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance			


Course Objectives: The objective of this course is to study, learn, and understand the major concepts of advanced operating systems, namely, multimedia operating systems, distributed and real time operating systems, threads, security and design issues in operating systems.

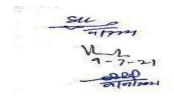

Course Outcomes	At the	At the end of this course, the student will able to: define: kernel, threads, concept of multimedia, distributed and real time operating										
CO1											ime op	erating
	system, issues in design, security and performance of operating system.											
CO2		understand and describe: kernel, threads, deadlock, virtualization, concept of										
		multimedia, distributed and real time operating system, issues in design, security and										
G0.0	_	performance of operating system.										
CO3		demonstrate/illustrate: process scheduling, disk scheduling ,real time scheduling, mutual exclusion, deadlock, security and protection mechanism in operating system.										
CO4												
CO4		fy algor		•		ieduiing	gand	disk so	cnedum	ig, mui	uai exc	iusion,
CO5		deadlock, security and protection.										
003		compare algorithm for: process scheduling and disk scheduling, mutual exclusion, deadlock, security and protection.										
	CO-PEO Mapping Matrix for Course MTech/CSE/PT/3/CC8											
COs	PE	CO1		PEO2		P	EO3		PEO4		PEO5	
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	
Average	2	.4		2.4			3		3		3	
	CO-	PO Maj	pping N	latrix f	or Cou	rse MT	ech/CS	SE/PT/	3/CC8			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	1	-	-	-	-	1	3
CO2	2	1	1	3	1	1	-	-	-	-	2	3
CO3	3	1	1	3	3	1	-	-	-	-	3	3

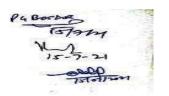
CO4	3	3	1	3	1	1	-	-	_	-	3	3	
CO5	3	1	1	3	3	1	-	-	-	-	3	3	
Average	2.4	1.8	1	2.6	1.8	1	-	-	_	-	2.4 3		
CO-PSO Mapping Matrix for Course MTech/CSE/PT/3/CC8													
COs	F	PSO1		PSO	2	P	SO3		PSO4	ļ	PSC) 5	
CO1	3 2 1 - 3												
CO2	3 2 2 -									3			
CO3		3		2			3		-		3		
CO4		3		2			3		-		3		
CO5		3		2			3		-		3		
Average		3		2		,	2.4		-		3		
				C/3/CC8		nced Op							
Unit I	Unit I Multimedia operating systems: Introduction to multimedia; multimedia files and video compression standards; process scheduling, file system, file placement, caching and disk scheduling for multimedia.												
Unit - II	Distributed operating systems: Multiprocessor hardware and scheduling; multicomputer hardware and scheduling; distributed computing architecture; distributed system models; distributed shared memory and distributed file system; mutual exclusion and deadlocks in distributed systems; network operating system vs. distributed operating system.												
Unit - III	schedul	ing in r	eal-tim	e operat	ing sys	ems; tre	ends ir	n kernel	design	, exo-k	al-time s ternel and	-	
Unit - IV	 kernel; virtualization; threads – concept, advantages, implementation. Unit - IV Design issues in operating systems: Goals and nature of design problem; guiding principles and paradigms of interface design; issues in implementation of operating system; performance of operating system; security – cryptography, user authentication, inside and outside attacks, protection mechanism. 										perating		
1				Text/Re	eferenc	e Books							
 Andrew S. Tanenbaum, Modern Operating Systems, 2e, Pearson – Prentice Hall. Pramod Chandra P. Bhatt, An Introduction to Operating Systems – Concepts and Practice, 3e, Prentice Hall, India. Charles Crowley, Operating Systems – A Design Oriented Approach, Tata McGraw Hill. 													
	1. Deitel H.M., Operating Systems, Pearson Education. 2. Stallings William, Operating System, PHI Learning. 3. Godbole A.S., Operating Systems, Tata McGraw-Hill, New Delhi. 4. TanenbaumA.S., Operating System- Design and Implementation, PHI Learning.												

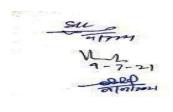


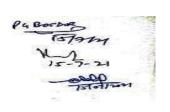

St. 5 9-7-21 9-7-21

M.Tech/CSE/PT/3/DSC3(i): IoT and Cloud Computing												
ximum Marks Exam Assessment												
rnal Internal Duration Methods												
30 3 Hours TEE/MTE/ Assignment/ Attendance												
r												

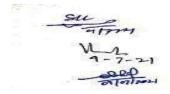

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service modes and security concerns, to learn core issues of Internet of Things, IoT communication protocols and security concerns.

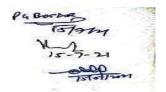

Course Outcomes	By the end of	this course, the studen	t will be able to:								
CO1		oT: framework, ar		n, communicat	ion challenges,						
		applications, principles of web connectivity.									
		oud computing: evol			service models,						
		, architecture, security									
CO2		understand and describe IoT: framework, architecture, design, communication									
		oplications, principles									
		nd describe cloud com			working, service						
		alization, architecture,									
CO3	use cloud con	nputing services in diff	Ferent fields of appl	ications.							
CO4	diagrammatis	liagrammatise IOT: framework, architecture, physical and logical design.									
	diagrammatis	liagrammatise cloud computing: service models, service-oriented architecture.									
CO5		grade/compare IoT: communication challenges, security issues, enabling technologies,									
	-	application areas, and protocols.									
	grade/compare cloud computing: service models. virtualization, and hypervisors.										
		ping Matrix for Cour									
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO 5	3	3	3	3	3						
Average	2.4	2.4	3	3	3						
	СО-РО Марр	oing Matrix for Cours	e M.Tech/CSE/PT	C/3/DSC3(i)							
Cos	PO1 PO2	PO3 PO4 PO5	PO6 PO7 PO	08 PO9 PO1	0 PO11 PO12						




CO.1	1	3	1	1	1	_	_	-	_	_	1	3
CO.2	2	1	1	3	1	-	-	-	-	-	2	3
CO.3	3	1	1	3	3	-	-	-	-	-	3	3
CO.4	3	3	1	3	1	-	-	-	-	-	3	3
CO.5	3	1	1	3	3	_	_	-	_	_	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	_	-	2.4	3
	CO-PSO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(i)											
Cos	P	PSO1		PSO2			SO3		PSO4		PSC)5
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average		3 2 2.4 - 3										
MTech/CSE/PT/3/DSC3(i): IoT and Cloud Computing												
IoT Architectural view, Technology Behind IoT, Sources of IoT, Examples of IoT, M2M Communication, Layered Architecture (3 & 5 Layered) of IoT, Physical Design and Logical Design, Domain-specific IoTs, Security Issues of IoT. Unit - II Communication challenges related to IoT, Enabling technologies for IoT. Applications of IoT: Home Automation, Smart Cities, Social Life and Entertainment, Health & Fitness, Smart Environment and Agriculture, Supply Chain and Logistics, Energy conservation. Design principles for web connectivity: Web Communication protocols for Connected Devices, Message Communication Protocols for Connected Devices.									ninment, ogistics,			
Unit - III	Evoluti Works,	on of cl Role of	oud cor	_	charac	teristics nputing	of clo	oud com	puting,	How C	oud con	
Unit - IV	Unit - IV Introduction to virtualization, Resource Virtualization-Server, Storage, Network, Load Balancing and Virtualization. Hypervisors and its types, Service Oriented Architecture (SOA), Overview of Security Issues, Challenges and Risks of Cloud.											
				Text/Re	eference	Books	ļ					
Text Books	2. Rol Apj	proach, bert Els proach,	Tata M enpeter 1e, Tata	cGraw I , Toby . a McGra	Hill, New J. Velte Iw Hill	w Delhi , Antho Educati	, 2010 ony T. on, 20	Velte, 11.	Cloud (Comput	uting a I ting: A I I Compu	Practical

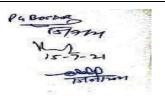
	Dummies, Wiley Publishing, 2010
Reference Books	 RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing- Principles and Paradigms, Wiley, 2011. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017

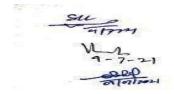


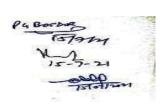


	MTech/CSE/PT/3/DSC3(ii): Grid Computing										
Course Type										Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/				
,					20 5 5		Attendance				

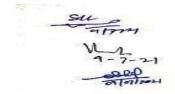
Course Objectives The objective of this course is to study, learn, and understand the concepts of grid computing.

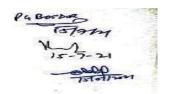

Course Outcomes	By the end of this course, the student will be able to:										
CO1	governance, (define:cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling.									
CO2	WSDL, e-gov	understand and describe: cluster computing ,grid computing, meta computing, SOAP, WSDL, e-governance, OGSA, WSRF, GT4,cluster middleware, protocols for clusters, HiPPI, process scheduling									
CO3	Illustrate/demonstrate: concepts of networking, protocols, load balancing and sharing, web services, globustoolkit,setting up and administration ofcluster.										
CO4	diagrammatize the architecture of: grid Computing ,service oriented architecture,GT4, OGSA-DAI, cluster categorize: clusters, protocols for clusters, networking and switching devices,schedulingpolicies,strategies for load balancing compare and evaluate: clusters, protocols for clusters,schedulingpolicies,strategies for										
CO5	load balancing	•	otocols for clusters	s,schedulingpolic	eies,strategies for						
	CO-PEO Mapp	oing Matrix for Cours	se M.Tech/CSE/P	Γ/3/DSC3(ii)							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO 5	3	3	3	3	3						
Average	2.4	2.4	3	3	3						
	CO-PO Mappi	ing Matrix for Course	e M.Tech/CSE/PT	7/3/DSC3(ii)							



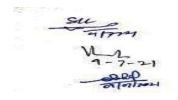

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	1	3	1	1	1	_	-	-	-	_	1	3
CO.2	2	1	1	3	1	_	-	-	-	_	2	3
CO.3	3	1	1	3	3	-	-	-	-	-	3	3
CO.4	3	3	1	3	1	_	-	-	_	-	3	3
CO.5	3	1	1	3	3	_	-	-	_	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	_	-	-	_	2.4	3
	CO-PS	Э Марр	oing Ma	trix for	Course	e M.Teo	ch/CS	E/ PT /3/	DSC3(i	ii)		
COs	COs PSO1 PSO2 PSO3 PSO4 PSO5)5
CO1		3		2			1		-		3	
CO2		3		2			2		_		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average	3 2 2.4 - 3											
Unit - II	 Unit - I Introduction: Cluster and Grid computing, Meta-computing, Web services and Grid Computing, e-Governance and the Grid Technologies and Architectures for Grid Computing: Issues in Data Grids, Functional requirements in Grid Computing, Standards for Grid Computing, Recent technologies trends in Large Data Grids. Web Services and the Service Oriented Architecture: Service Oriented Architecture, SOAP and WSDL, Creating Web Services, Server Side. Unit - II OGSA and WSRF: OGSA for Resource Distribution, Stateful Web Services in OGSA, WSRF, WSRF Specification Globus Toolkit: History, version, Applications, Approaches and Benefits, Infrastructure Management, Monitoring and Discovery, Security, Data Choreography and Coordination, GT4 Architecture, GT4 Containers. The Grid and Databases: Requirements, Storage Request Broker, Integration of 										nctional nologies itecture, OGSA, structure lination,	
Databases with the Grid, Architecture of OGSA-DAI for offering Grid Database services. Unit - III Cluster Computing: Approaches to Parallel Computing, Definition and Architecture of a Cluster, Categories of clusters. Cluster Middleware: Levels and Layers of Single System Image, Design objectives, Resource Management and Scheduling, Cluster programming Environment and Tools. Networking, Protocols and I/O for clusters: Networking and Interconnection/Switching Devices, Design Issues, Design Architecture, HiPPI, ATM, Myrinet, Memory Channel Unit - IV Setting Up and Administering a Cluster: Setup of simple cluster, setting up nodes.												
Cint - IV		of clus								, stc1, st	anig up	noucs,

	Cluster Technology for High Availability: High availability clusters, high availability parallel computing, types of failures and errors, cluster architectures and configurations for high availability, Failure/Recovery clusters. Process Scheduling: Job management System, Resource management system, policies of resource utilization, Scheduling policies. Load Sharing and Load Balancing: Introduction, Strategies for load balancing, Modelling parameters								
	Text/Reference Books								
Text Books	 Grid and Cluster Computing by C.S.R. Prabhu, PHI The Grid: Blueprint for a New Computing Infrastructure, Ian Foster, Carl Kesselman, Elsevier Series, 2004. Grid Computing for Developers, Vladimir Silva, Charles River Media, January 2006. 								
Reference Books	 Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and MinyiGuo (editors), Wiley Press, New Jersey, USA, June 2005. Grid Resource Management: State of the Art and Future Trends, JarekNabrzyski, Jennifer M. Schopf, Jan Weglarz, International Series in Operations Research & Management Science, Springer; 1e, 2003. 								



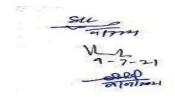


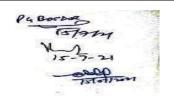
	M.Tech/CSE/PT/3/DSC3(iii): Quantum Computing											
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					


Course Objectives: The objective of this course to understand the basic concept of quantum computing it's relation to mathematics and physics, quantum circuits, quantum information and cryptography, quantum algorithms.

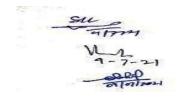
Course Outcomes	By the	end of	this cou	irse, the	student	will be	able to	o:				
CO1	define	quantui	n comp	utation:	mechar	nics, circ	cuit, m	ultiple	teleport,	ation,	cryptograpl	ny
	and pr	ogramn	ning lan	guages								
CO2				•		•			es, circui		•	
	telepoi	rtation,	quantun	n algorit	thms cr	yptograj	phy an	d prog	gramming	g langu	iages.	
	interpr	interpret: error correction and computation of fault-tolerant.										
CO3	determ	letermine the relationship of quantum with: mathematics,										
	physic				_							
									complex			
CO4	_	analyze: quantum programming languages, quantum computations, error correction,										
		Cault-tolerant computation.										
CO5		compare: quantum algorithms, classical and quantum information theory, classical gates										
		and quantum gates.										
	evaluate: classical computation on quantum computers. CO-PEO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(iii)											
	ı		ing Ma		Cours			υ/P 1/.				
Cos	PE	O1		PEO2		P	EO3		PEO4		PEO5	
CO1	1	l		1			3		3		3	
CO2	2	2		2			3		3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3			3		3		3	
CO5	3	3		3			3		3		3	
Average	2.	.4		2.4			3		3		3	
	CO-PO	Mappi	ng Mat	rix for	Course	M.Tecl	h/CSE	/PT/3	/DSC3(ii	i)		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11 F	PO12

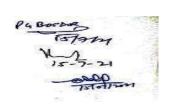
CO.1	1	3	1	1	1	_	_	-	-	_	1	3
CO.2	2	1	1	3	1	-	-	1	-	-	2	3
CO.3	3	1	1	3	3	_	-	ı	-	-	3	3
CO.4	3	3	1	3	1	_	-	-	-	-	3	3
CO.5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	_	-	-	-	-	2.4	3
(CO-PSO Mapping Matrix for Course M.Tech/CSE/PT/3/DSC3(iii)											
COs	P	SO1		PSO2			SO3		PSO4		PSC)5
CO1		3		2			1		-		3	
CO2		3		2			2		-		3	
CO3		3		2			3		-		3	
CO4		3		2			3		-		3	
CO5		3		2			3		-		3	
Average		3		2		,	2.4		-		3	
Unit - I Introduction to Quantum Computation: Concept and need of quantum computing. Quantum bits and quantum operations, Postulates of quantum mechanics, Bloch sphere representation of a qubit, multiple qubits, classical gates versus quantum gates. Unit - II Background Mathematics and Physics: Hilber space, Probabilities and measurements, entanglement, density operators and correlation, basics of quantum mechanics. Measurements in bases other than computational basis. Quantum Circuits: single qubit gates, multiple qubit gates, design of quantum circuits. Unit - III Quantum Information and Cryptography: Comparison between classical and quantum information theory. Bell states. Quantum teleportation. Quantum Cryptography, no												
Unit - IV	cloning theorem, Quantum programming languages, Probabilistic and Quantum computations. Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor factorization, Grover search. Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Text/Reference Books 1. An Introduction to Quantum Computing Algorithms, Pittenger A. O., 2000. 2. Quantum computing explained, David McMahon, John Wiley & Sons, Inc. Publication 2008 3. Quantum computation and quantum information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press 2010 4. Introduction to Quantum Mechanics, 2e, David J. Griffiths, Prentice Hall New Jersey											


Reference Books	1.	Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci,
		Cambridge University Press 2008
	2.	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II:
		Basic Tools and Special Topics, Benenti G., Casati G. and Strini G., World Scientific,
		2004.

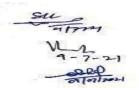

MTech/CSE/	MTech/CSE/PT/3/CC9: Software Lab based on MTech/CSE/PT/3/CC7 (MATLAB Programming)										
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File				

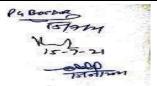
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.


Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of MATLAB and their usage. This course is based on MTech/CSE/PT/3/CC7 MATLAB Programming.


Course Outcomes	At the end of	this course, the student	t will be able to:					
CO1	define: feature	define: features, commands, data types, hierarchy of operations, matrix, tools, functions						
	related to inpu	ıt/output, file handling	and graphics, con	trol structure an	d toolboxes used			
	in MATLAB.							
CO2	describe: hist	ory, origin, features,	commands, data	types, hierarch	y of operations,			
	matrix, tools,	functions related to fil	e, function related	to graphics, con	trol structure and			
	various toolbo	exes of MATLAB.						
CO3		ls, operations, tools, m						
		ated to graphics, 2D			ture, debugging,			
	simulink and	simulink and image & video processing toolboxes in MATLAB.						
CO4	•	analyze: commands, data types, operations, control structure, matrix, tools, differen						
	functions related to graphics and file handling in given MATLAB program.							
CO5	determine: co	mmand, data type, to	ool, menu, control	structure, debu	gging technique,			
	function, featu	re or toolbox of MAT	LAB to use in give	n condition.				
CO6		or advanced program i	U		•			
		tions, tools, features, s	• •	gic, neural netwo	ork and image &			
	video processi	ng toolbox of MATLA	AB.					
	CO-PEO Ma	pping Matrix for Co	urse MTech/CSE/	PT/3/CC9				
Cos	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	1	3	3	3			

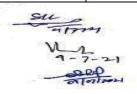
CO2		2		2			3			3		3	
CO3	:	3		3		3			3			3	
CO4		3		3			3			3		3	
CO5		3		3			3			3		3	
CO6		3		3			3			3		3	
Average	2	5		2.5			3			3		3	
	CO-	PO Maj	ping N	Iatrix f	or Cou	rse MT	ech/CS	SE/P	T/3/CC	29	ı		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC	08 PC	9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-		-	1	3
CO2	2	1	1	3	1	-	-	-	-	Ì	-	2	3
CO3	3	1	1	1 3 3		-	-	-	-	j	-	3	3
CO4	3	3	1 3 1		-	-	-	-	ĺ	-	3	3	
CO5	3	1	1	3	3	-	-	-	-		-	3	3
CO6	3	3	3	3	3	-	-	-	-		-	3	3
Average	2.5	2	1.33	2.67	2			-	ĺ	-	2.5	3	
	CO-F	PSO Ma	pping I	Matrix f	for Cou	ırse MT	ech/C	SE/I	PT/3/C0	C9			
Cos	F	PSO1		PSO2	2	P	SO3		PS	O4		PSC)5
CO1		3		3			1			-		3	
CO2		3	3				2			-		3	
CO3		3	3			3			-			3	
CO4		3	3			3		-			3		
CO5		3	3			3		-			3		
CO6		3		3		3			-			3	
Average		3		3			2.5		-			3	

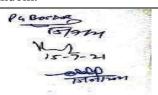




]	MTech/CS	SE/PT/4/CC	10: Python	Program	ming		
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment
	Credit	Hours/Wee k	Mode	Externa 1	Internal	Duration	Methods
Compulsory Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

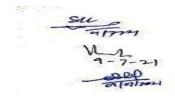
Course Objectives: The objectives of this course is to get the students familiar with basic concepts of Python programming, decision making and functions, file handling and object oriented programming concepts, database programming and to implement machine learning concepts.

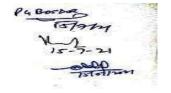

Course Outcomes	At the end of this course, the student will be able to:													
CO1		define: installations, working, structures, control statements, operators, lists, object oriented programming concepts, python libraries.												
CO2					ntrol sta thon pro				gs, OO	Ps ,file	e handlii	ng cond	cepts,	
CO3					such as									
CO4	_	rize: d librari		es, dic	tionarie	s, co	ond	itional	& co	ntrol s	tatements	s, funct	tions,	
CO5	compa librarie		types,	diction	aries, co	ondit	ion	al & co	ontrol s	tatemei	nts, funct	ions, py	ython	
CO6	design	: basic	and adv	anced	applicati	ions i	in p	ython.						
	CO-P	CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/CC10												
COs		PEO1 PEO2 PEO3 PEO4 PEO						PEO5						
CO1		1			1		3			3		3		
CO2		2			2		3				3		3	
CO3		3			3			3		3			3	
CO4		3			3			3		3		3		
CO5		3		3			3		3		3			
CO6		3		3			3		3					
Average	2.5 2.5 3 3 3						3							
	CO-	PO Ma	pping I	Matrix	latrix for Course MTech/CSE/PT/4/CC10									
COs	PO1	PO2	PO3	PO4	PO5	РО	6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-		-	-	-	-	1	3	



CO2	2	1	1	3	1	-	-	_	_	_	2	3	
CO3	3	1	1	3	3	-	-	_	-	-	3	3	
CO4	3	3	1	3	1	-	-	<u> </u>	-	-	3	3	
CO5	3	1	1	3	3	-	-	_	-	-	3	3	
CO6	3	3 3 3			3	-	-	-	-	-	3	3	
Average	2.5	2	1.3	2.6	2	-	-	_	-	-	2.5	3	
	CO-I	SO M	apping	Matri	x for Co	urse l	MTech/(CSE/PT	7/4/CC	10			
COs		PSO	1		PSO2		PS	О3		PSO4		PSO5	j
CO1		3			3			1		-		3	
CO2 3 3 2 - 3													
CO3	CO3 3 3 - 3												
CO4		3			3		3	3		-		3	
CO5		3			3		-	3		-		3	
CO6		3			3		3			-		3	
Average 3 3 2.5 - 3													
	N	1		T/4/C(thon F	rogram						
I Init _ I		Incta	llation	and W	Jorking	with	Python	Heina	Heln 9	Structure	a of a	Dython	

N	Course Content //Tech/CSE/PT/4/CC10: Python Programming
Unit – I	Installation and Working with Python, Using Help, Structure of a Python Program, Control flow, Interpreter shell, Tokens, Identifiers, Reserved keywords, Literals, Variables, Python basic Operators, Declaring and using Numeric data types: int, float, complex, using string data type. Python Casting, Scope of a Variable, Working with: String, List, Tuples and Dictionaries.
Unit – II	Conditional blocks using if, else and elif, For loops in python, While loops, Continue, Break and Else, organizing python codes using functions, Modules: Creating Module, using Modules and Built-in Modules. Packages: Package Types, Importing Package, Viewing Package Content and Documentation. Powerful Lambda Function in python, Programming: Using Functions, Modules and Packages.
Unit – III	Object Oriented Programming: Concept of Class, Object and Instances, Constructor, Class Attributes and Destructors, Built-in Class Attributes, Inheritance, Method Overriding, Data Encapsulation, Overloading Operators, Data Hiding, Exception Handling, Programming using Oops concepts. File Handling: Creating, Opening, Closing, Writing & Reading File Content, Deleting a File. Programming using file operations.
Unit – IV	Python NumPy: Array Slicing, Array Indexing, Data Types, Array Shape & Reshape, Array Join, Array Split, Random.

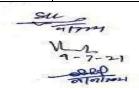


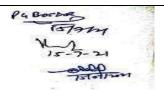

	Python Pandas: Data Frames, Read CSV, Analyzing Data and Cleaning Data. Python Matplotlib: Line, Grid, Scatter, Bars, Histograms and Pie Charts.
	Text/Reference Books
Text Books	 Chun, J Wesley, Core Python Programming, 2e, Pearson, 2007. E. Balagurusamy, Introduction to Computing and Problem Solving Using Python, McGraw Hill Education, 2016.
Reference Books	 Barry and Paul, Head First Python, 2e, O Reilly, 2010. Lutz and Mark, Learning Python, 4e, O Reilly, 2009

	MTech/CSE/PT/4/CC11:Research Methodology											
Course	Course	Contact	Delivery	Maximu	ım Ma	ırks		Exam	Assessment			
Type	Credit	Hours/ Week	Mode	External	Int	erna	ıl	Duration	Methods			
Optional Theory	04	04	Lecture	70		30		3 Hours	TEE/MTE/ Assignment/			
Theory					20	5	5		Attendance			

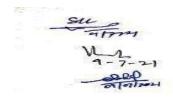
Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: objectives, hypothesis, interpretation, data analysis, data collection,
	research design and method, interpretation, data analysis, sampling.
CO2	describe: objectives, hypothesis, interpretation, data analysis, data collection,
	research design and method, interpretation, data analysis, sampling.
CO3	Illustrate: measurement. data collection, processing, sampling, analysis and its strategies, reports.
CO4	categorize: research, sampling methods, data collection techniques, reports and data processing strategies. perform: data analysis.
CO5	compare: sampling methods, data collection techniques, reports and data processing strategies.
CO6	create: thesis, reports. design: research tool . interpret(drive): results.



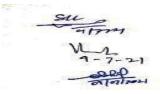


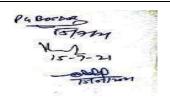
CO1 1 1 1 3 3 3 CO2 2 2 2 3 3 3 CO3 3 3 3 3 3 3 CO4 3 3 3 3 3 3 CO5 3 3 3 3 3 3 CO6 3 3 3 3 3 3 CO-PO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos Day Day Day Day Day Day Day Day Day Day	PE0.5	1	DEC :		1	DECC	1 -		DEC	1	_	O-PEC	
CO2 2 2 3 3 3 3 CO3 3 3 3 3 3 3 3 CO4 3 3 3 3 3 3 3 3 CO5 3 3 3 3 3 3 3 3 CO6 3 1 1 1 1 1 1 1 1 1 1 1 1 <td>PEO5</td> <td colspan="7"></td> <td></td> <td>Cos</td>	PEO5									Cos			
CO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
CO4 3 1													
CO5										1			
CO6 3 3 3 3 3 3 CO-PO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos Eq. Q Q Q Q Q Q Q Q Q	3		3			3			3		3	3	CO4
Average	3		3			3			3		3		CO5
CO-PO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos	3		3			3			3		3	3	CO6
COS Q	3		3			3			2.5		.5	2	Average
CO1 1 3 1 1 1 - - 3 - 3 1 CO2 2 1 1 3 1 - - 3 - 3 2 CO3 3 1 1 3 1 - - 3 - 3 2 CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO3 3			/CC11	E/PT/4	SE/	Tech/C	rse M'	or Cou	atrix f	ping Ma	Map	O-PO	C
CO1 1 3 1 1 1 - - 3 - 3 1 CO2 2 1 1 3 1 - - 3 - 3 2 CO3 3 1 1 3 3 - - 3 - 3 3 CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Co3 3 3 3 3 3 3 3 CO3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Cos</td>													Cos
CO1 1 3 1 1 1 - - 3 - 3 1 CO2 2 1 1 3 1 - - 3 - 3 2 CO3 3 1 1 3 3 - - 3 - 3 3 CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Co3 3 3 3 3 3 3 3 CO3 <td>PO112</td> <td>010</td> <td>60</td> <td>08</td> <td>80</td> <td>07</td> <td>90</td> <td>05</td> <td>90</td> <td>03</td> <td>02</td> <td>01</td> <td></td>	PO112	010	60	08	80	07	90	05	90	03	02	01	
CO2 2 1 1 3 1 - - 3 - 3 2 CO3 3 1 1 3 3 - - 3 - 3 3 CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 2 3 3 CO2 3 3 3 3 3 CO3	M M	P	Ь	Ь	P	Ь	Ъ	Ь	Ъ	Ь	Ъ	Ь	
CO3 3 1 1 3 3 - - 3 - 3 3 CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3	1	3	-	3		 -	_	1	1	1	3	1	CO1
CO4 3 3 1 3 1 - - 3 - 3 3 CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO5 3 3 3 3 3 <	2	3	-	3		-	-	1	3	1	1	2	CO2
CO5 3 1 1 3 3 - - 3 - 3 3 CO6 3 3 3 3 - - 3 - 3 3 Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO6 3 3 3 3 3 CO6 3 3 3 3 3	3	3 - 3 3				-	-	3	3	1	1	3	CO3
CO6 3 3 3 3 3 - - 3 - 3 3 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO6 3 3 3 3 3	3						-	1	3	1	3	3	CO4
Average 2.5 2 1.3 2.6 2 - - 3 - 3 2.5 CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO6 3 3 3 3 3	3	3	-	3		<u> </u>	-	3	3	1	1	3	CO5
CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC11 Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO6 3 3 3 3 3	3	3	-	3		-	-	3	3	3	3	3	CO6
Cos PSO1 PSO2 PSO3 PSO4 PSO CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 3 CO4 3 3 3 3 3 CO5 3 3 3 3 3 CO6 3 3 3 3 3	2.5	3	-	3		-	-	2	2.6	1.3	2	2.5	Average
CO1 3 3 1 3 3 CO2 3 3 2 3 3 CO3 3 3 3 3 CO4 3 3 3 3 CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 6 7 4	1 1	Ĺ	4/CC11	E/PT/	CSE	Tech/C	ırse M	for Cou	atrix	ping M) Map	O-PSC	C
CO2 3 3 2 3 3 CO3 3 3 3 3 CO4 3 3 3 3 CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PSO5		PSO4			SO3	PS		SO2	P	D1	PSC	Cos
CO3 3 3 3 3 CO4 3 3 3 3 CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3		3			1			3			3	CO1
CO4 3 3 3 3 CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3 3 3 3 3	3	j	3	İ	İ	2			3			3	CO2
CO4 3 3 3 3 CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3 3	3		3			3			3			3	CO3
CO5 3 3 3 3 CO6 3 3 3 3 3 3 3 3	3 3 3 3												
CO6 3 3 3 3 3	3		3			3			3			3	
	3 3 3 3												
Average 3 3 2.3 3 3	3		3			2.5	2		3			3	Average
		 											


Unit - I

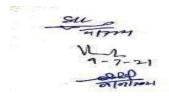

Objectives and types of research: motivation and objectives- research methods vs. methodology, types of research- descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs, empirical research formulation: defining and formulating the research problem-. selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-

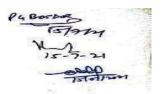
Unit – II	primary and secondary source reviews, hypothesis- definition, qualities of a good hypothesis, null hypothesis and alternatives. Research design and methods: basic principles, need of research design- features of
	good design, important concepts relating to research design, criteria of selecting a sampling procedure, characteristics of a good sample design, sampling methods, measurement: concept of measurement, problems in measurement in research - validity and reliability. levels of measurement- nominal, ordinal, interval, ratio.
Unit – III	Data collection and analysis: execution of the research, observation and collection of data, methods of data collection, data processing and analysis strategies, data analysis with statistical packages, hypothesis testing, generalization and interpretation, univariate analysis (frequency tables, bar charts, pie charts, percentages).
Unit – IV	Meaning of interpretation, need of interpretation, technique of interpretation, precaution in interpretation, layout of a research paper, journals in computer science, impact factor of journals, ethical issues related to publishing, plagiarism and self-plagiarism. reports and thesis writing: structure and components of scientific reports, types of report- technical reports and thesis, writing-synopsis, abstract, illustrations and tables, results, summary, reference citing and listing.
	Text/Reference Books
Text Books	 J. Garg, B.L, Karadia, R, Aggarwal F, An Introduction to Research Methodology, RBSA Publishers, 2002. Kothari, C.R, Research Methodology: Methods and Techniques. New Age International, 1990 Santosh Gupta, Research Methodology and Statistical Techniques, Deep & Deep Publications Pvt. Ltd., 2008
Reference Books	1. N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.




	MTech/CSE/PT/4/DSC4(i): Data Warehousing and Data Mining							
Course Type	Course	Contact	Delivery			Exam	Assessment	
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

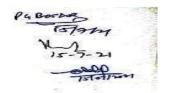
Course Objectives: The objective of this course is to get the students familiar with different concepts of data warehouse and data mining, namely, OLAP, Association rule mining, classification and prediction.


Course Outcomes	At the end of this course, the student able to:
CO1	define: the concepts of data mining, data pre-processing, outliers, data warehouse,
	OLAP, association rule mining, data classification prediction and cluster Analysis.
CO2	describe: key process of data mining ,data warehousing, OLAP, data warehousing to
	data mining, association rule, classification and prediction methods.
CO3	apply: OLAP technology and association rules.
	use: decision induction, bayesion and back propagation classification methods.
CO4	differentiate: operational database systems and data warehousing, single dimensional and multidimensional association rules, and between various data mining classification
	methods.
CO5	evaluate: data mining and data warehouse, OLAP technology, single and multi-dimensional association rule.

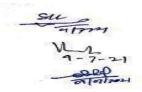

CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/DSC4(i)													
COs		PEO1		PEO2			PEO3			PEO4		PEO5	
CO1		1		1			3			3		3	
CO2		2		2			3		3			3	
CO3		3		3	3 3					3		3	
CO4		3		3			3		3		3		
CO5		3		3			3		3			3	
Average		2.4		2.4			3		3		3		
	CO-P	О Марр	ing Ma	atrix fo	or Cou	se MT	ech/CS	E/PT/	4/DSC4	l(i)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	_	_	-	_	-	1	3	
CO2	2	1	1	3	1	_	_	-	_	-	2	3	
CO3	3	1	1	3	3	-	-	-	_	_	3	3	

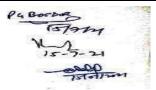
CO4	3	3	1	3	1	-	_	-	_	-	3	3	
CO5	3	1	1	3	3	-	_	-	_	_	3	3	
Average	2.4	1.8	1	2.6	1.8	-	_	_	_	_	2.4	3	
	CO-PS	O Map	ping M	latrix f	or Cou	rse MT	Гесh/С	SE/PT	/4/DSC	4(i)			
COs]	PSO1		PSO2 PSO3					PS	SO4	P	SO5	
CO1		3		3			1			-		3	
CO2		3		3			2			-		3	
CO3		3		3			3			-		3	
CO4		3		3			3			-		3	
CO5		3		3			3			-		3	
Average		3		3			2.4			-		3	
Unit - I	Course Content MTech/CSE/PT/4/DSC4(i): Data Warehousing and Data Mining							cess, data					
	mining, kind of data, Functionalities, interesting patterns, classification of data mining system, Major issues, Data Mining Primitives. Data Pre-processing: Data cleaning, Data Integration and transformation, Data reduction, Discretization and concept hierarchy generation. Data visualization. Outliers, Types of Outliers and challenges of Outlier Detection												
1	betwee Model,	n opera	tional arehou	data ba se Arcl	se syste	ems ar e, Data	nd data	wareh	nouse,	A Multio	dimensi	difference onal Data rehousing	
1	Association Rule Mining: Mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases and data warehouses, From association mining to correlation analysis, constraint-based association Mining.												
	Data Mining-Classification and Prediction: issues regarding classification and prediction, classification by decision induction, Bayesian classification, classification by back propagation, classification based on concepts from association rule mining other classification methods. Cluster Analysis: What is Cluster Analysis, Types of Data in Cluster Analysis, Applications and Trends in Data Mining.												
				Text/R	Reference	e Boo	ks						
		e Berson ruaans, l	_				_		ning,T	МН.			

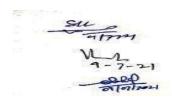
	3. Addison-Wesley Longman, Data Warehousing in the Real World.
Reference Books	 Chanchal Singh, Data Mining and Warehousing, Wiley. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann Publishers, 2001.

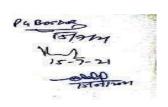

MTe	ch/CSE/PT	Γ/4/DSC4	(ii) Big D	ata Analy	tics		
Course Type	Course	Contact	Delivery Mode	Maximu	m Marks	Exam Duration	Assessment Methods
	Credit	Hours/ Week		External	Internal		
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignmen/ Attendance

Course Objectives: The objective of this course is to get the students familiar with concepts of big data, its architecture and applications; NoSQL and HADOOP.

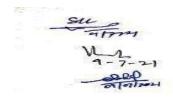

Course Outcomes	At the end of this course, the student would have understanding of:
CO1	define: Big Data and Hadoop, digital data, Apache Hadoop, analysing Data with Unix
	tools and Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy,
	HDFS, Hadoop Ecosystem, Pig, Hive shell and services, HBasics, Big SQL.
CO2	understand and describe: Big Data and Hadoop, Analysing Data with Hadoop,
	Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Hadoop
	Distributed File System, command line interface, job scheduling, shuffle and sort,
	task execution, Hadoop Ecosystem, Pig, HiveQL, Hbase.
CO3	apply and use: Apache Hadoop, HDFC, HBasic, Big Data and Hadoop, HDFS
	command line interface, Hadoop file system interfaces, data flow, Hive services.
CO4	classify:Big Data and Hadoop, Big Data Analytics, Apache Hadoop, HDFS ,Hive
	shell, Hive services.
CO5	Compare feature set of Pig, hadoop, HDFC

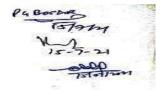

CO-	CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (ii)							
COs	PEO1	PEO2	PEO3	PEO4	PEO5			



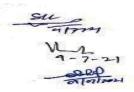

CC) 1		1		1				3		3		3	
CC)2		2		2				3		3		3	
CC)3		3					3			3		3	
CC)4		3		3			3			3		3	
CC)5		3		3				3		3		3	
Aver	rage		2.4		2.	4			3		3		3	
	CO	-PO	Mappin	g Matı	rix for C	Course	MTe	ch/CSI	E/ PT/4	/DSC4	(ii)			2
СО	os 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
СО	1	1	3	1	1	1	-	-	-	-	-	1	3	
СО	2	2	1	1	3	1	-	-	-	-	_	2	3	
СО	3	3	1	1	3	3	-	-	-	-	-	3	3	
СО	4	3	3	1	3	1	-	-	-	-	-	3	3	
СО	5	3	1	1	3	3	-	-	_	-	-	3	3	
Avera	age	2.4	1.8	1	2.6	1.8	-	-	_	-	-	2.4	3	
	CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (ii) 2.								2.4					
СО)s]	PSO1		PSC	2		PSO3			PSO4	ļ	PSO5	
СО	1		3		3			1			-		3	
СО	2		3		3			2			-		3	
СО	3		3	Ì	3		Ì	3			-		3	
СО	4		3	j	3			3			-		3	
СО	5		3		3				3		-		3	
Avera	age		3		3			2.4			- 3			
			MTec	·h/CSI	Course			io Dat	a Anal	vtics				•
Unit I Introduction to Big Data and Hadoop: Types of digital data, introduction to Big Data, Vs of Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, analysing Data with Unix tools, Analysing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Big Data applications.														
Unit - II HDFS (Hadoop Distributed File System): The design of HDFS, HDFS concepts, command line interface, Hadoop file system interfaces, data flow, data ingest with flume and Scoop and Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures.														
Unit – III	nit – III Map Reduce: Anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types and formats, Map Reduce features.													
Unit – IV														

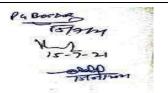
	tables, querying data and user defined functions. Hbase: HBasics, concepts, clients, example, Hbase versus RDBMS. Big SQL: Introduction							
	Text/Reference Books							
Text Books	 Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. SeemaAcharya, SubhasiniChellappan, "Big Data Analytics" Wiley 2015. ArvindSathi, "BigDataAnalytics: Disruptive Technologies for Changing the Game", MC Press. 							
Reference Books	 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" AuerbachPublications, CRC press (2013) AnandRajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & Sons, 2012. 							

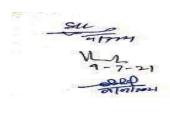


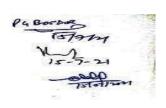

	MTech/CSE/PT/4/DSC4 (iii) Data Science							
Course Type	Course	Contact Delivery Maximum Marks		um Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods	
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/ Attendance	

Course Objectives: The objective of this course is to get the students familiar with the concepts of data science, data analysis and associated visualization techniques.


	u visualization techniques.
Course Outcomes	At the end of this course, the student would have an understanding of:
CO1	define: data science process, classification of data, big data, web data, sampling, data analysis techniques-correlation, regression, mean, mode, kurtosis, Bayesian inference etc., neural network, fuzzy logic, rule of mining, hadoop, hive, cloud database, and visualization.
CO2	understand and describe: graphical representation of data, storage and retrieval of data, evolution of analytic scalability, sampling distribution, data analysis techniques, Bayesian model and network, induction rule, neural network, fuzzy logic, data mining techniques, data analysis framework and visualization.
CO3	use: data science process, modern data analytic tools, statistical concepts, data analysis techniques, Bayesian network, induction rule, fuzzy logic, data mining techniques, hadoop file system, hive, S3, cloud database, inference and visualization.
CO4	categorize: analytic processes and tools, analysis, reporting, sampling and resampling, data analysis techniques, linear and non-linear time series, sequential, temporal and spatial mining, egonets systems and application.
CO5	choose: data science process, data storage, data analytic tools and processes, sampling method, data analysis technique, time series, mining techniques, visual data analysis framework and technique suitable in given situation.


C	CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (iii)												
Cos	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3	3	3	3								
Average	2.4	2.4	3	3	3								
	CO-PO Mapp	oing Matrix for Cou	se MTech/CSE/P	T/4/DSC4 (iii)									




COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
Average	2.4	1.8	1	2.6	1.8	-	-	-	-	-	2.4	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/DSC4 (iii)												
COs PSO1 PSO2 PSO3 PSO4 PSO5											O5	
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		_		3	
CO5		3		3			3		-		3	
Average		3		3			2.4		-		3	
Unit I Unit – II	of data big dat analyti Statisti error. Data variabl regress networ Analys	Analys es, ana ion mo ks, supplies of Ti	ical presences concepts: is: Corrlysis usedeling, port vec	sentation of conve tools, a sampling relation, sing mea multiva tor and l es: linea	regressian, med	a, classi system vs repo butions, ssion, p dian, m nalysis, nethods ms analy	fications, webserting, re-san probabilistic ode, see Bayes;	on of data, on of data, on of data, on oderrupling, dility, Contandardian monopolinea	ata, stora evolution data an statistic Condition I deviation deling,	nge and n of ana alytic to cal infer nal prob ion, ske inference	retrieva alytic scools; rence, p pability, ewness, ce and	rediction random kurtosis, Bayesian
Unit - III Data Mining Techniques: Rule induction: neural networks: learning and generalization, competitive learning, principal component analysis and neural networks; Fuzzy Logic: extracting fuzzy models from data, fuzzy decision trees, stochastic search methods, neuro fuzzy modelling, Association Rule Mining: clustering, outlier analysis, sequential pattern mining, temporal mining, spatial mining, web mining. Unit – IV Data Analysis Frameworks and Visualization: Map Reduce, Hadoop, Hive, sharding, NoSQL databases, cloud databases, S3, Hadoop Distributed File Systems, visualizations, visual data analysis techniques, interaction techniques, social network analysis, collective inferencing, Egonets systems and applications.											temporal sharding, lizations,	
				Text/R	eferenc	e Book	s					
Text Books.	1. Mi	chael R	erthold					Data Aı	nalysis",	Springe	er, 2007	
2011 200110			-1	,		,	-5-111	1 11	, ,	-F8	-, -007	-

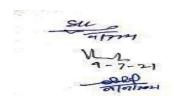
	2. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
Reference Books	 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &Sons, 2012. Jiawei Han, MichelineKamber "Data Mining Concepts and Techniques", 2e, Elsevier. Rachel Schutt, Cathy O'Neil, "Doing Data Science", O'Reilly Publishers, 2013. Foster Provost, Tom Fawcet, "Data Science for Business", O'Reilly Publishers, 2013. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2014. S. N. Sivanandam, S. N Deepa, "Introduction to Neural Networks Using Matlab 6.0", Tata McGraw- Hill Education, 2006.



	MTech/CS	MTech/CSE/PT/4/CC12: Software Lab based on MTech/CSE/PT/4/CC10 (Python Programming)														
J F		Course	Contact	Delivery Mode	Maxim	um Marks	Exam	Assessment								
		Credit	Hours/Week		External	Internal	Duration	Methods								
	Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File								

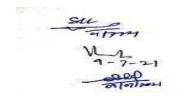
Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

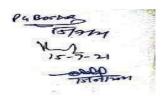
Course Objectives: The objective of this course is to perform the modeling and simulation experiments with Python. Concepts covered in MTech/CSE/PT/4/CC10 will be implemented.


Course Outcomes	At the	end of	this cou	irse, the	e studen	t will b	e able	to:				
CO1	define: installations, working, structures, control statements ,operators, lists ,object oriented programming concepts, python libraries.											
CO2	explain: conditional & control statements, strings, OOPs, file handling concepts, libraries and packages of python programming.											
CO3		use: various python libraries such as numpy, matplotlib, pandas . apply: python programming constructs to solve real world problems.										
CO4		categorize: data types, dictionaries, conditional & control statements, functions, python libraries.										
CO5		compare: data types, dictionaries, conditional & control statements, functions, python libraries.										
CO6 design: basic and advanced applications in python.												
CO-PEO Mapping Matrix for Course MTech/CSE/PT/4/CC12												
COs		PEO	1		PEO2			PEO3		PEO4		PEO5
CO1		1			1		3			3		3
CO2		2			2			3				3
CO3		3			3		3			3		3
CO4		3			3		3			3		3
CO5		3			3		3			3		3
CO6		3			3			3		3		3
Average		2.5			2.5		3			3		3
	CO-PO	Марр	oing Ma	atrix fo	r Cours	ве МТе	ch/CS	E/PT/4	/CC12			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	_	-	-	-	2	3
CO3	3	1	1	3	3	-	_	_	_		3	3

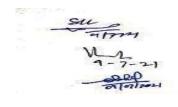
.

CO4	3	3	1	3	1	-	_	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	-	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	_	-	 -	-	-	2.5	3
CO-PSO Mapping Matrix for Course MTech/CSE/PT/4/CC12												
COs		PSO1			PSO2		PSO3			PSO4		PSO5
CO1		3			3		1			-		3
CO2		3			3		2			-		3
CO3		3			3		3			_		3
CO4		3		j	3		3			-		3
CO5		3			3		3			_		3
CO6	3			3		3			-		3	
Average		3			3		2.5			-		3




	MTech/CSE/PT/5/SEC1:Dissertation													
Course	Course Contact		Delivery	Maximu	ım Marks	Exam	Assessment							
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods							
Research Work	20	04	-	400	100	-	Teacher interaction/ Dissertation/ Viva voce							

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of dissertation and a viva voce exam.


Course Objectives: The objective of this course is to inculcate a flavor of research in the scholars by allowing them to work on a real life research problem.

Course Outcomes	At the end of	At the end of this course, the student will be able to:										
CO1		define: objectives, hypothesis, interpretation, data analysis, data collection,										
		research design and method, interpretation, data analysis, sampling.										
CO2		describe: objectives, hypothesis, interpretation, data analysis, data collection,										
	research des	research design and method, interpretation, data analysis, sampling.										
CO3		Illustrate: measurement, data collection, processing, sampling, analysis and its										
		strategies, reports.										
CO4	_	categorize: research, sampling methods, data collection techniques, reports,										
	-	and data processing strategies.										
		perform: data analysis.										
CO5	-	compare: sampling methods, data collection techniques, reports and data										
		processing strategies.										
CO6		create: thesis, reports.										
	_	design: research tool. interpret(drive): results.										
	•	ing Matrix for Co	urse MTech/CSE	/PT/5/SEC1								
Cos	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	1	3	3	3							
CO2	2	2	3	3	3							
CO3	3	3	3	3	3							
CO4	3	3	3	3	3							
CO5	3	3	3	3	3							
CO6	3	3	3	3	3							
Average	2.5	2.5	3	3	3							
	CO-PO Mappii	ng Matrix for Cou	rse MTech/CSE/	PT/5/SEC1								

Cos	01	02)3	4)5	9(70	80	60	10	11	12
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P01	PO12
CO1	1	3	1	1	1	j -	-	3	-	3	1	3
CO2	2	1	1	3	1	-	-	3	-	3	2	3
CO3	3	1	1	3	3	-	-	3	-	3	3	3
CO4	3	3	1	3	1	-	-	3	-	3	3	3
CO5	3	1	1	3	3	-	-	3	_	3	3	3
CO6	3	3	3	3	3	-	-	3	-	3	3	3
Average	2.5	2	1.3	2.6	2	-	_	3	-	3	2.5	3
C	O-PSC) Map	ping M	latrix	for Co	ourse M	Tech/C	SE/PT/	5/SEC	1		
Cos	PS	01	P	SO2		PSO3			PSO4	1	PSO5	
CO1	3	3		3		1			3		3	
CO2	3	3		3			2		3		3	
CO3	3	3		3			3		3		3	
CO4	3	3		3			3		3		3	
CO5	3	3		3			3		3		3	
CO6	3	3		3			3		3		3	
Average	3	3		3		4	2.5		3		3	

